
1

Assignment 1: Dynamic Array and Linked List
Due at 11:59 pm on Sunday, 1/21/2024 1/28/2024

Demo due by 11:59 pm on Friday 2/2/2024 2/9/2024

This assignment is intended to get you up and running with some of the tools we'll be
using in this course and also to start programming in C. The assignment has three
parts, described below.

Part 0. Download the skeleton code and unzip
You may download the skeleton code for this assignment here, or use the wget
command:
wget https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment1.zip

To unzip the file, use the following command:
unzip assignment1.zip

Part 1. Implement a dynamic array
In part 1 of the assignment, you will implement a dynamic array.
The interface for the dynamic array (i.e. the structures and the prototypes of functions
a user of the dynamic array interacts with) is already defined for you in the file
dynarray.h. Your task is to implement definitions for the functions that are listed in

dynarray.c.

Importantly, you may not modify the interface definition with which you are provided.
Specifically, do not modify any of the already-defined dynamic array function
prototypes. We will use a set of unit tests to test your implementation, and if you
change the dynamic array interface, it will break these unit tests, thereby (negatively)
affecting your grade. Beyond the already-defined interface, though, feel free to add
any additional functions or structures your dynamic array implementation needs.
The dynamic array functions you'll need to implement are outlined briefly below. All of
these functions use a type called struct dynarray, which is defined in

dynarray.c and represents the dynamic array itself. For more details, including

information on function parameters and expected return values, see the documentation
provided in dynarray.c.

• dynarray_create() – This function should allocate, initialize, and return a

pointer to a new dynamic array structure.

• dynarray_free() – This function should free the memory held within a

dynamic array structure created by dynarray_create(). Note that this

function only needs to free the data array itself. It does not need to free the

individual elements held within that array.

• dynarray_size() – This function should return the number of elements

stored in a dynamic array (NOT the capacity of the array).

https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment1.zip
https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment1.zip

2

• dynarray_insert() – This function should insert a new element at the end

of a dynamic array. In other words, if the array currently contains n elements
(in indices 0 through n-1), then the new element (the n+1'th element) should
always be inserted at index n. If there is not enough space in the dynamic
array to store the element being inserted, this function should double the size
of the array.

• dynarray_remove() – This function should remove the element at a

specified index from a dynamic array. After the element is removed, there will
be a "hole" where the element used to be. All elements after the removed one
(i.e. with higher indices) should be moved forward one spot to fill that hole. In
other words, if the element at index i is removed, then the element at index i+1
should be moved forward to index i, the element at index i+2 should be moved
forward to index i+1, the element at index i+3 should be moved forward to
index i+2, and so forth.

• dynarray_get() – This function should return the element value stored at a

specified index in a dynamic array.

• dynarray_set()– This function should update (i.e. overwrite) the value of an

element at a specified index in a dynamic array.

Part 2. Implement a Singly Linked List
In part 2, you will implement a singly linked list.
Again, the interface for the linked list (i.e. the structures and the prototypes of functions
a user of the linked list interacts with) is already defined for you in the file list.h.

Your next task in this assignment is to implement definitions for the functions that are
listed in list.c.

Again, do not modify the interface definition with which you are provided. This will
break the unit tests we use for testing, which will cause your grade to suffer. You may
still feel free to implement any additional functions you need beyond the ones defined
in the interface.

The functions here will make use of two different structures:

• struct node – This structure represents a single node in the linked list. It

has one field in which to store the data element associated with the node and
one field that will point to the next node in the list.

• struct list – This structure represents an entire list and contains a single

field to represent the head of the list. This is the structure with which the user
of your list implementation will interact.

3

As with the dynamic array, see comments in list.c for more information on function

parameters, expected return values, etc. for the linked list interface. The linked list
functions you'll need to implement are outlined briefly below.

• list_create() – This function should allocate, initialize, and return a

pointer to a new linked list structure.

• list_free() – This function should free the memory held within a linked list

structure created by list_create(), including any memory allocated to the

individual links themselves. Note, though, that this function should not free the
values held in the individual links.

• list_insert() – This function should insert a new value at the beginning

(i.e. as the head) of a linked list. Importantly, this function will need to allocate a
new struct node in which to store the new value and add that node at the

head of the list. The current head should become the next element after the new
one.

• list_insert_end() – This function should insert a new value at the end

(i.e. as the tail) of a linked list. Importantly, this function will need to allocate a
new struct node in which to store the new value and add that node at the tail

of the list.

• list_remove() – This function should remove the first instance of a

specified value from a linked list. If multiple instances of the specified value exist
in the list, only the first (i.e. the one closest to the head) should be removed. If
the specified value doesn't exist in the list, this function doesn't need to do
anything. This function will be passed a *function pointer* that you can use to
determine whether the value to be removed matches any of the values stored in
the list. Importantly, this function will also need to free the memory held by the
node being removed (it does not need to free the stored value itself, just the
node).

• list_remove_end() – This function should remove the last node from a

linked list. If the list is empty, this function doesn't need to do anything. This
function will also need to free the memory held by the node being removed (it
does not need to free the stored value itself, just the node).

• list_position() – This function should return the list position (i.e. the 0-

based "index") of the first instance of a specified value within a linked list. If
multiple instances of the specified value exist in the list, the "index" of the first
one (i.e. the one closest to the head) should be returned. If no instances of the
specified value exist in the list, this function should return the special value -1.
This function will be passed a function pointer that you can use to determine
whether the value to be located matches any of the values stored in the list.

4

• list_reverse() – This function should reverse a linked list in place, that is

within the memory of the existing list, without allocating new memory.

Test your work
In addition to the skeleton code provided here, you are also provided with some
application code in test_dynarray.c and test_list.c to help verify that your

dynamic array and linked list implementations are behaving the way you want them to.
In particular, the testing code calls the functions from dynarray.c and list.c,

passing them appropriate arguments, and then prints the results. You can use the
provided Makefile to compile all of the code in the project together, and then you can

run the testing code as follows:
make

./test_dynarray

./test_list

Example output of these two testing programs using correct implementations of the
dynamic array and linked list is provided in the example_output/ directory.

In order to verify that your memory freeing functions work correctly, it will be helpful to
run the testing application through valgrind, i.e.:
valgrind ./test_dynarray

valgrind ./test_list

Extra Credit: Implement a Doubly-Linked List
For up to 10 points of extra credit, you will implement a doubly linked list. In a doubly
linked list, in addition to the head pointer, you will also have a tail pointer pointing to

the end of the list. Each node in a doubly-linked list will also have two pointers, with the
next pointer pointing to the next node, and prev pointer pointing to the previous

node.

The interface for the doubly linked list (i.e. the structures and the prototypes of
functions a user of the linked list interacts with) is already defined for you in the file
db_list.h, and you must complete each of the functions that are listed in

db_list.c.

Again, do not modify the interface definition with which you are provided. You may still
feel free to implement any additional functions you need beyond the ones defined in
the interface.

For db_list_insert_end() and db_list_remove_end() functions, you are not allowed to
iterate through the list (i.e., loops are not allowed). Hint: use the tail pointer instead.

To test your doubly-linked list implementation, a testing application test_db_list.c

is provided. This application will be compiled automatically using the provided
Makefile. You can run it like so: ./test_db_list.

5

Submission
In order to submit your homework assignment, you must create a zip file that contains

assignment1/ folder with your implementation. This zip file will be submitted

to TEACH . In order to create the zip file, go to the directory where you can access the

assignment1/, and use the following command:

zip assignment1.zip assignment1 -r

Remember to sign up with a TA to demo your assignment. The deadline of

demoing this assignment without penalties is 2/2/2024.

https://teach.engr.oregonstate.edu/teach.php?type=want_auth

