
1

Assignment 3: Binary Search Tree
Due at 11:59 pm on Sunday, 2/25/2024

Demo due by 11:59 pm on Friday 3/8/2024

This assignment is intended to have you start to explore non-linear data structures by
implementing a binary search tree (BST). After implementing the BST, you'll solve
some BST-based puzzle problems. The requirements for the assignment are
described below.

Part 0. Download the skeleton code and unzip
You may download the skeleton code for this assignment using wget command:
wget https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment3.zip

To unzip the file, use the following command:
unzip assignment3.zip

Part 1. Implement a binary search tree
Your main task for this assignment is to implement a binary search tree(BST). A BST
is a tree-structured data type that allows fast insertions, lookups, and removals by
structuring itself in a way that encodes the behavior of binary search. Specifically, each
node in a BST has at most two children, a left child and a right child, and every node
satisfies the BST property, which requires that all values stored in a node's left subtree
must be less than that node's value, while all values stored in a node's right subtree
must be greater than or equal to that node's value.

For this assignment, the interface for the BST you'll implement (i.e. the structures and
the prototypes of functions a user of the BST interacts with) is already defined for you
in the file bst.h. Your first task in this assignment is to implement definitions for the

functions that comprise this interface in bst.c.

Note that you may not modify the interface definition with which you are
provided. Specifically, do not modify any of the already-defined BST function
prototypes. We will use a set of tests to verify your implementation, and if you change
the BST interface, it will break these tests, thereby (negatively) affecting your grade.
You may also not modify any of the existing structures defined in the starter code (i.e.
struct bst and struct bst_node). Beyond these things, though, feel free to add

any additional functions or structures your BST implementation needs.
(Hint: you might want to add helper functions that takes struct bst_node as

parameter, so you can apply recursion!)

The BST functions you'll need to implement are outlined briefly below. All of these
functions use a type called struct bst, which is defined in bst.c and represents

the BST itself. For more details, including information on function parameters and
expected return values, see the documentation provided in bst.c.

https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment3.zip
https://en.wikipedia.org/wiki/Binary_search_tree

2

• bst_create() – This function should allocate, initialize, and return a pointer to

a new BST structure.

• bst_free() – This function should free the memory held within a BST

structure created by bst_create(). Note that this function only needs to free

the memory held by the BST itself. It does not need to free the individual
elements stored in the BST. This is the responsibility of the calling function.

• bst_size() – This function should return the total number of elements stored

in a given BST. Importantly, because you can't modify the fields of struct bst

or struct bst_node, you'll have to calculate a BST's size each time this

function is called. It could be helpful to think recursively here. Feel free to
write any helper functions you need to make this work.

• bst_insert() – This function should insert a new key/value pair into a given

BST. The BST should be ordered based on the specified key value. In other
words, your BST must always maintain the BST property among all keys stored
in the tree.

• bst_remove() – This function should remove the value with a specified key

from a given BST. If multiple values are stored in the tree with the same key,
the first one encountered (i.e. the one closest to the root of the tree) should be
removed.

• bst_get() – This function should return the value associated with a specified

key in a given BST. If multiple values are stored in the tree with the same key,
the first one encountered (i.e. the one closest to the root of the tree) should be
returned.

Part 2. Solve some BST puzzles
Now that you have the basic BST itself implemented, it's time so solve a few job
interview-type BST "puzzles". Each of the puzzles you'll solve is listed below. For each
one, you'll implement a function that's already stubbed out for you in bst.c. Note that

some of these are hard puzzles! If you can't immediately figure out a solution to all of
them, don't worry. I strongly encourage you to discuss how to solve these problems
with your fellow classmates, especially on Discord.

1. Compute the height of a BST. The first puzzle problem is to implement the
function bst_height() to compute the height of a given BST. Remember, the

height of a tree is the maximum depth of any node in the tree (i.e. the number of
edges in the path from the root to that node). Like with bst_size() above, it

could be helpful to think recursively to solve this problem. Feel free to write
any helper functions you need to make this work.

3

2. Check if a path sum is valid in a BST. The next puzzle problem involves path
sums. A path sum is the sum of all the keys in a path from the BST root to one
of the BST leaves. For example, the following BST (with only its keys visualized)
has two path sums, 10 and 40:

 8
 / \
 2 12
 \
 20

For this problem, you'll implement the function bst_path_sum()to determine

whether a given value is a valid path sum within a given BST. In other words,
you should check whether the BST contains any path from the root to a leaf
where the keys sum to the specified value. Again, it could be helpful to think
recursively here, and you can again feel free to write any helper functions you
need.

3. Compute a range sum in a BST. The last puzzle problem involves computing
the sum of all the keys in a BST within a given range. Specifically, you should
implement the function bst_range_sum() to compute the sum of all keys in a

BST between a given lower bound and a given upper bound. For example, in
the BST above, the sum for the range [2, 15] is 22 (i.e. 2 + 8 + 12), and the sum
for the range [5, 10] is 8 (since 8 is the only key within that range). As with the
problems above, it could be helpful to think recursively here. Feel free
again to implement any helper functions you need here.

Note that for full credit on this problem, you should not explore/process
any subtree whose keys cannot be included in the range sum. For
example, when computing the sum for the range [5, 10] in the tree above, the
subtree rooted at 12 should not be explored/processed, since none of the keys
in that subtree fall within the specified range.

Extra credit: implement an in-order BST iterator
For up to 10 points of extra credit, you can implement an iterator for your BST that
returns keys/values from the BST in the same order they would be visited during an in-
order traversal of the tree. In particular, for a BST, this means the iterator should return
keys in ascending sorted order.

The type you'll use to implement the iterator, struct bst_iterator, is declared in

bst.h and defined in bst.c. You may not change the definition of this structure by

adding or modifying its fields. The one field it contains represents a stack, which
means that you'll have to use a stack to help you order and store the BST's nodes
during the in-order iteration (the stack implementation is provided in stack.{h,c}

and list.{h,c}).

https://en.wikipedia.org/wiki/Iterator

4

You'll also have to implement the following functions, which are defined in bst.c (with

further documentation in that file):

• bst_iterator_create() – This function should allocate, initialize, and

return a pointer to a new BST iterator. The function will be passed a specific
BST over which to perform the iteration.

• bst_iterator_free() – This function should free the memory associated

with a BST iterator created by bst_create(). It should not free any memory

associated with the BST itself. That is the responsibility of the caller.

• bst_iterator_has_next() – This function should return a 0/1 value that

indicates whether or not the iterator has nodes left to visit.

• bst_iterator_next() – This function should return both the key and value

associated with the current node pointed to by the iterator and then advance the
iterator to point to the next node in an in-order traversal. Note that the value
associated with the current node must be returned via an argument to this
function. See the documentation in bst.c for more about this.

To be able to earn this extra credit, your BST insertion function must be working
correctly. Importantly, to earn the full 10 points of extra credit, your iterator must
have worst-case space complexity of O(h), where h is the height of the BST. In
other words, to earn full credit, you can't just implement a normal in-order traversal of
the BST that stores all of the tree's nodes in the correct order in the iterator's stack.
You'll have to be more clever.

Hint: To implement this iterator so that it has O(h) space complexity, try to mimic the
way a recursive in-order traversal works. In particular, think about the way that each
node in a BST "waits" to be visited/processed while its entire left subtree is explored.
Then after that node is visited/processed, its entire right subtree is explored. Can you
use the stack with which you're provided to implement this "waiting" behavior? In
particular, can you put BST nodes onto the stack in such a way that the top of the
stack always represents the next node to be visited/processed in an in-order traversal?
To see how this might work, think about the way function calls are added and removed
to/from the call stack during a recursive in-order BST traversal.

To test your iterator implementation, a testing application test_bst_iterator.c is

provided. This application will be compiled automatically when you run make, and you

can run it like so: ./test_bst_iterator. The expected output for this application is

provided in the example_output/ directory.

5

Additional Information: Storing key/value pairs
It is important to note that each data element stored in your BST will actually consist of
two parts: a key and a value. Under this scheme, the key will serve as a unique
identifier for the data element, while the value will represent the rest of the data
associated with that element. For example, if you were storing information about OSU
students in your BST, the key for each student element might be that student's OSU ID
number, while the corresponding value might be a struct containing all other data
related to that student (e.g. name, email address, GPA, etc.). Storing data as key/value
pairs is a common approach that we'll see in other data structures we explore in this
course.

For your BST implementation, each data element's key will be represented as an
integer value, while the associated value will be a void pointer. This is reflected in the
structure you must use to represent a single node in your BST:

struct bst_node {

 int key;

 void* value;

 struct bst_node* left;

 struct bst_node* right;

};

Your BST should be organized based on the keys of the elements. In other words, the
BST property must always hold among all keys in the tree. For example, when a new
data element is inserted into your BST, decisions about whether to insert that element
within a node's left subtree or its right subtree should be based on comparisons
between the key of the element being inserted and the keys stored in the tree.
Similarly, when a user wants to lookup or remove data elements stored in your BST,
they will do so by specifying the key to be found/removed.

Testing your work
In addition to the skeleton code provided here, you are also provided with some
application code in test_bst.c to help verify that your BST implementation, is

behaving the way you want it to. In particular, the testing code calls the functions from
bst.c, passing them appropriate arguments, and then prints the results. You can use

the provided Makefile to compile all of the code in the project together, and then you

can run the testing code as follows:

make

./test_bst

Example output of the testing program using a correct BST implementation is provided
in the example_output/ directory.

In order to verify that your memory freeing functions work correctly, it will be helpful to
run the testing application through valgrind.

6

Submission
In order to submit your homework assignment, you must create a zip file that contains

assignment3/ folder with your implementation. This zip file will be submitted

to TEACH . In order to create the zip file, go to the directory where you can access the

assignment3/, and use the following command:

zip assignment3.zip assignment3 -r

Remember to sign up with a TA to demo your assignment. The deadline of

demoing this assignment without penalties is 3/8/2024.

