
1

Assignment 4: Priority Queues
Due at 11:59 pm on Sunday, 3/3/2024

Demo due by 11:59 pm on Friday 3/15/2024
(Note: THIS IS A ONE-WEEK ASSIGNMENT!!!)

In this assignment, you will implement a binary heap-based priority queue (PQ). The
requirements for the assignment are described below.

Part 0. Download the skeleton code and unzip
For this assignment, you are provided with some starter code that defines the
structures you'll be working with and prototypes the functions you'll be writing and also
provides some data structures upon which to build a PQ implementation. You may
download the skeleton code for this assignment using the wget command:
wget https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment4.zip

To unzip the file, use the following command:
unzip assignment4.zip

Part 1. Implement a heap-based priority queue
Your task for this assignment is to implement a priority queue (PQ). A PQ is a structure
that orders data elements based on assigned priority values. Specifically, elements
can be inserted into a PQ in any order, but when removing an element from a PQ, the
highest-priority element is always removed first.

You must build your PQ using a binary heap. A binary heap is a data structure that
takes the form of a binary tree. There are two different kinds of binary heaps:

• A minimizing binary heap is organized so that the element with the lowest key is
always at the root of the tree.

• A maximizing binary heap is organized so that the element with the highest key
is always at the root of the tree. In this assignment, you will specifically base
your PQ implementation on a minimizing binary heap.

The interface for the PQ you'll implement (i.e. the structures and the prototypes of
functions a user of the PQ interacts with) is already defined for you in the file pq.h.

Your job is to implement definitions for the functions that comprise this interface
in pq.c.

Note that you may not modify the interface definition with which you are
provided. Specifically, do not modify any of the already-defined PQ function
prototypes. We will use a set of tests to verify your implementation, and if you change
the PQ interface, it will break these tests, thereby (negatively) affecting your grade.
Beyond these things, though, feel free to add any additional functions or structures
your PQ implementation needs. In particular, you'll have to specify a definition of the
main PQ structure, struct pq, in pq.c.

https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment4.zip
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Binary_heap

2

The PQ functions you'll need to implement are outlined briefly below. All of these
functions use the type struct pq, which represents the PQ itself and which you'll

have to define in pq.c. For more details, including information on function parameters

and expected return values, see the documentation provided in pq.c. Here are the

functions you'll have to implement:

• pq_create() – This function should allocate, initialize, and return a pointer to

a new PQ structure.

• pq_free() – This function should free all the memory held within a PQ

structure created by pq_create() without any memory leaks. Note that this

function only needs to free the memory held by the PQ itself. It does not need to
free the individual elements stored in the PQ. This is the responsibility of the
calling function.

• pq_isempty() – This function should return 1 if the PQ is empty and 0

otherwise.

• pq_insert() – This function should insert a new value with specified priority

into the PQ. This operation must have O(log n) runtime complexity.

• pq_first() – This function should return the first value (i.e. the highest-

priority value) from a PQ without removing it. This operation must have O(1)
runtime complexity.

• pq_first_priority() – This function should return the priority value

associated with the first element in a PQ without removing that element. This
operation must have O(1) runtime complexity.

• pq_remove_first() – This function should remove the first value (i.e. the

highest-priority value) from a PQ and return that value. This operation must
have O(log n) runtime complexity.

Your priority queue must be implemented using a minimizing binary heap as the
underlying data structure. This means that within the priority queue you implement,
lower priority values should correspond to elements with higher priority. In other words,
the first element in the priority queue should be the one with the lowest priority value
among all elements in the collection. For example, your priority queue should return an
element with priority value 0 before it returns one with priority value 10.

You are provided with a dynamic array implementation in dynarray.c and

dynarray.h that you can use to implement your heap, if you'd like. In addition to this

dynamic array implementation, you may implement any additional helper functions you
need to make your priority queue work.

3

Testing your work
In addition to the skeleton code provided here, you are also provided with some
application code in test_pq.c to help verify that your PQ implementation, is behaving

the way you want it to. In particular, the testing code calls the functions from pq.c,

passing them appropriate arguments, and then prints the results. You can use the
provided Makefile to compile all of the code in the project together, and then you can

run the testing code as follows:

make

./test_pq

Example output of the testing program using a correct PQ implementation is provided
in the example_output/ directory.

In order to verify that your memory freeing functions work correctly, it will be helpful to
run the testing application through valgrind.

Submission
In order to submit your homework assignment, you must create a zip file that contains

assignment4/ folder with your implementation. This zip file will be submitted

to TEACH . In order to create the zip file, go to the directory where you can access the

assignment4/, and use the following command:

zip assignment4.zip assignment4 -r

Remember to sign up with a TA to demo your assignment. The deadline of

demoing this assignment without penalties is 3/15/2024.

