
1

Assignment 5: Hash Tables & Dijkstra’s
Due at 11:59 pm on Sunday, 3/17/2024

This assignment will not be demoed. Instead, you will need to submit a readme
text file (see “README.txt” below). TAs will grade this assignment during final’s
week!!!

In this assignment, you will implement a hash table (HT). The requirements for the
assignment are described below.

Part 0. Download the skeleton code and unzip
For this assignment, you are provided with some starter code that defines the
structures you'll be working with and prototypes the functions you'll be writing and also
provides some data structures upon which to build a HT implementation. You may
download the skeleton code for this assignment using the wget command:
wget https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment5.zip

To unzip the file, use the following command:
unzip assignment5.zip

Part 1. Implement a hash table
Your task for this assignment is to implement a hash table (HT).

You must build your HT using either a dynamic array or an array of linked list. A
dynamic array-based HT resolves collisions using open addressing whereas array of
linked list based HT resolves collisions using chaining.

The interface for the HT you'll implement (i.e. the structures and the prototypes of
functions a user of the HT interacts with) is already defined for you in the
file hash_table.h. Your job is to implement definitions for the functions that

comprise this interface in hash_table.c.

Note that you may not modify the interface definition with which you are
provided. Specifically, do not modify any of the already-defined HT function
prototypes. We will use a set of tests to verify your implementation, and if you change
the HT interface, it will break these tests, thereby (negatively) affecting your grade.
Beyond these things, though, feel free to add any additional functions or structures that
your HT implementation needs. In particular, you'll have to specify a definition of the
main HT structure, struct ht, in hash_table.c.

The HT functions you'll need to implement are outlined briefly below. All of these
functions use the type struct ht, which represents the HT itself and which you'll

have to define in hash_table.c. For more details, including information on function

parameters and expected return values, see the documentation provided
in hash_table.c. Here are the functions you'll have to implement:

https://classes.engr.oregonstate.edu/eecs/winter2024/cs261-020/assignments/assignment5.zip

2

• ht_create() – This function should allocate, initialize, and return a pointer to

a new HT structure.

• ht_free() – This function should free all the memory held within a HT

structure created by ht_create() without any memory leaks. Note that this

function only needs to free the memory held by the HT itself. It does not need to
free the individual elements stored in the HT. This is the responsibility of the
calling function.

• ht_isempty() – This function should return 1 if the HT is empty and 0

otherwise.

• ht_size() – This function should return the size of a given hash table.

• ht_hash_func() – This function should take a key, map it to an integer

index value in the HT, and return the index. The hash algorithm is provided
through a function pointer.

• ht_insert() – This function should insert an element with a specified key

into a HT. Note: if the key already exists in the hash table, update the
value. Collisions must be handled, either by chaining or open addressing.
If using chaining, double the number of buckets when the load factor is >= 4;
If using open addressing, double the array capacity when the load factor is >=
0.75, where load factor = (number of elements) / (hash table capacity).
This operation must have O(1) average runtime complexity.

• ht_lookup() – This function should search for a given element in the HT with

a provided key. This operation must have O(1) average runtime complexity.

• ht_remove() – This function should remove an element in the HT with a key

provided. This operation must have O(1) average runtime complexity.

You are provided with a dynamic array implementation in dynarray.c and

dynarray.h as well as a linked list implementation in list.c and list.h that you

can use to implement your hash table, if you'd like. In addition to this dynamic array
and linked list implementation, you may implement any additional helper functions you
need to make your hash table work.

Testing your work
In addition to the skeleton code provided here, you are also provided with some
application code in test_hash_table.c to help verify that your HT implementation,

is behaving the way you want it to. In particular, the testing code calls the functions

3

from hash_table.c, passing them appropriate arguments, and then prints the

results. You can use the provided Makefile to compile all of the code in the project

together, and then you can run the testing code as follows:

make

./test_ht

Example output of the testing program using a correct HT implementation is provided
in the example_output/ directory.

In order to verify that your memory freeing functions work correctly, it will be helpful to
run the testing application through valgrind.

Part 2. Application: Dijkstra's algorithm
One of the most well-known applications of the priority queue data structure is in the
implementation of Dijkstra's algorithm, which is used to find least expensive paths in a
graph data structure. For example, below is an example of a graph:

In this graph, there are 4 nodes (A, B, C, and D) and there are edges connecting the
nodes (the arrows). Each edge has a cost associated with it indicating how expensive
it is to travel on that particular edge. For example, to move on the edge from C to B
has a cost of 4. Note that the arrows representing some edges in this graph only point
in one direction, and one can only travel in the direction indicated by the arrow. For
example, in this graph you can travel directly from B to A (with a cost of 3), but you
can't travel from A directly to B. Instead, to travel from A to B, you must go through C
(i.e. taking the path A → C → B) or through both C and D (i.e. taking the path A → C
→ D → B).

Dijkstra's algorithm is used to find the least expensive path from one starting node to
all other nodes in the graph. For example, starting from node A, Dijkstra's algorithm
would find the following least-expensive paths to the other nodes in the graph:

• B: A → C → B with total cost 6

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

4

• C: A → C with total cost 2
• D: A → C → B → D with total cost 9

Dijkstra's algorithm is centered around a priority queue, which is used to help order the
search for least-expensive paths. Here's pseudocode for Dijkstra's algorithm, where
the starting node is N_start:

for every node N:

cost[N] = infinity

prev[N] = undefined

Q = new priority queue

insert N_start into Q with priority 0

while Q is not empty:

// c is the total cost of the path to N

c = Q.first_priority()

// N_prev is the previous node on the path to N

{N, N_prev} = Q.remove_first()

if c < cost[N]:

cost[N] = c

prev[N] = N_prev

// A neighbor is a node connected to N by an edge

for each neighbor N_i of N:

c_i = cost of edge from N to N_i

// N is the previous node on the path to N_i

insert {N_i, N} into Q with priority c + c_i

At the end of this algorithm, cost[N] will contain the cost of the least expensive path

from N_start to N, and prev[N] will contain the node before N in that path. The

entire path to N can be computed by tracing backwards:

prev[N], prev[prev[N]], prev[prev[prev[N]]], ...

If you prefer a video tutorial instead, here is one that explains how Dijkstra’s algorithm
is implemented using a priority queue.

Your job here is to implement Dijkstra's algorithm to find the shortest paths in the
graph specified in the file airports.dat. Here are some things you'll have to do to

make this work:

• Read the data from the file airports.dat. You can use the

functions fopen() and fscanf(), respectively, to open and read data from

the file. (Note: the provided skeleton code already opens the file and loads the

https://www.youtube.com/watch?v=CerlT7tTZfY&ab_channel=MaryElaineCaliff
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
https://www.tutorialspoint.com/c_standard_library/c_function_fscanf.htm

5

first two integers into variables!) The file has a special format that will make it
easier to read:
<num_nodes>

<num_edges>

<node_i> <node_j> <cost_i_j>
...

Specifically, the first line of the file contains the number of nodes n in the graph,

and the second line contains the number of edges specified in the file. The
remaining lines each specify one edge in the graph. Each edge specification
consists of 3 values:

o An integer index between 0 and n-1 representing the source node of the

edge (i.e. the edge goes from this node).
o An integer index between 0 and n-1 representing the destination node of

the edge (i.e. the edge goes to this node).
o The cost associated with the edge.

• Store the graph data you read in an easily usable format. I'd recommend storing

the graph data as an adjacency matrix. For a graph with n nodes, an adjacency

matrix would be an n x n matrix (i.e. a 2D array), where the entry at location

(i, j) is simply the weight of the edge between node i and node j or 0 if there

is no edge between nodes i and j. For example, an adjacency matrix for the

graph pictured above would look like this:
 A B C D

 +------------

A | 0 0 2 0

B | 3 0 0 3

C | 0 4 0 8

D | 0 3 0 0

• Once the graph is read and stored, implement Dijkstra's algorithm as outlined
above. Importantly, you'll have to figure out how to store the necessary data in
your priority queue (hint: storing both the current node and the previous node in
your queue will probably require a custom struct). For this assignment, you

can assume that node 0 is the starting node. In other words, you want to find
the least-cost path from node 0 to each other node in the graph. Once you've
found these paths, print them out, along with their total cost.

Below is a depiction of the graph defined in airports.dat:

https://mathworld.wolfram.com/AdjacencyMatrix.html

6

This graph represents a hypothetical set of flights between airports in the US. In this
graph, the nodes represent airports in the US, and each edge weight represents the
cost of a flight between two specific airports. Your goal in finding the least-cost paths
using Dijkstra's algorithm here is to figure out the least expensive set of flights to get
from PDX to each of the other airports. (As will become clear once you've solved the
problem, we're not necessarily concerned with minimizing the number of layovers
here.)

README.txt
Assignment 5 will not be demoed. TAs will grade on their own during Finals Week.
Besides your code, you will submit a README.txt that outlines how your program is
compiled and run. Failure to submit a README.txt will result in a deduction as well as
any penalties that may be incurred as a result of incorrect use of your program. The
README.txt needs to include the following information:

1. Your name and ONID
2. Description: One paragraph advertising what your program does (for a user

who knows nothing about this assignment, does not know C, and is not going to
read your code). Highlight any special features.

3. Instructions: Step-by-step instructions telling the user how to compile and run
your program. If you expect a certain kind of input at specific steps, inform the
user what the requirements are. Include examples to guide the user.

4. Limitations: Describe any known limitations for things the user might want or try
to do but that program does not do/handle.

7

Submission
In order to submit your homework assignment, you must create a zip file that contains

assignment5/ folder with your implementation. This zip file will be submitted

to TEACH . In order to create the zip file, go to the directory where you can access the

assignment5/, and use the following command:

zip assignment5.zip assignment5 -r

Do not forget to submit your README.txt !!!

