
CS 261-020
Data Structures

Lecture 1

Introduction and Course Syllabus

1/9/24, Tuesday

1

Odds and Ends

• We have recitations this week
• Recitation 1 posted on Canvas

• Go to your registered recitation

• Assignment 1 posted

2

Lecture Topics:

• Course Intro

• Syllabus

• C Basics

3

Course Intro

• “… the difference between a bad programmer and a good one is
whether [s]he considers his[/her] code or his[/her] data structures
more important. Bad programmers worry about the code. Good
programmers worry about data structures and their relationships.”

-Linus Torvalds, creator of the Linux kernel

4

Data Structure

• Data structures are general-purpose mechanisms for storing,
organizing, and managing data within a running program.
• Encapsulates the operations associated with a particular structure

• a given data structure represents not only the stored data itself, but
also often represents the relationships between specific data
elements

5

Data Structures Classification

6
https://www.javatpoint.com/data-structure-introduction

https://www.javatpoint.com/data-structure-introduction

Data Structure Examples

7

A real-life example: Auto-complete

• Scenario: You are asked to add an autocomplete
feature to the search box in your web
application. This feature will behave much like
Google’s autocomplete feature.

• The data for this feature is already compiled and
provided to you in an alphabetically-sorted text
file that contains one completion per line.

• Question: How are you going to store and use
that data in your running web application?

8

A real-life example: Auto-complete

• One possible solution: Trie (pronounced as “try”)
• also called digital tree or prefix tree

9

Goals:

• Be familiar with a collection of foundational data structures
• dynamic arrays, lists, queues, stacks, trees, hash tables, graphs, etc.

• To understand how to analyze and manage the complexity associated
with data structures and their operations
• Gives more control to our programs’ running times and memory usage

• Be able to compare data structures and choose/design the best one
for a particular task

10

Caveat

• None of the data structures is a perfect data structure for all situations!

• Things to consider…
• How long does it take to run? (time)

• How much space does it require to store the data of given size? (space)

• How hard is it to implement?

11

Lecture Topics:

• Course Intro

• Syllabus

• C Basics

12

Syllabus

13

Course Structure

• 10 weeks schedule
• Weekly Schedule on Canvas (Calendar page)

• C Basics (Week 1)

• Array and list (Week 2)

• Complexity Analysis (Week 2-3)

• Stack, queue, deque (Week 3-4)

• Trees (Week 5-7)

• Priority queues, heaps (Week 7-8)

• Map and Hash Table (Week 8-9)

• Graph (Week 9-10)

14

Course Information

• Canvas site:
• All course materials

• TEACH:
• Code submission (as .c)

• Discord:
• Online discussion and Q&A forum

15

Basics

• Instructor: Yipeng (Roger) Song
• I go by Roger ☺

• Email
• Instructor: songyip@oregonstate.edu

• TAs: cs261-ta@engr.orst.edu (TAs and me)

• Office Hours: TBD @ TBD

• Requirements: Laptop (Windows, MacOS, or Linux)

• Programming Language: C

16

mailto:songyip@oregonstate.edu
mailto:cs261-ta@engr.orst.edu

More Basics…

• Be respectful (Establishing a Positive Community)

• Have a growth mindset
• Most abilities could be developed through dedication and hard work

• Don’t cheat (0 tolerance!!)

• Be Proactive
• Take control and cause something to happen, rather than just adapt to a situation or wait for

something to happen

17

Attendance

• Lecture: Strongly Encouraged

• I will post lecture slides, demoed code, and additional resources on Canvas → Calendar

• You are expected to be present during exam dates!!!

• Recitation: Required

• Recitation 1 document is posted on Canvas → Recitations

• Missed recitations result in a zero for that recitation
• Email TA mailer BEFORE the end of recitation

• Subject: “[CS261-020] Missing a Recitation”

• Recitation you are missing

• Excuse for missing recitation

• Plan for making up the recitation

18

Grade Breakdown

• 20% - Recitations

• 40% - Assignments

• 10% - Bi-Weekly Quizzes

• 30% - Exams
• 15% - Midterm

• 15% - Final

19

Recitations – 20%
• 10 in total

• Recitation materials will focus on implementing topics from class

• 10 pts per recitation, correctness + effort-based, check off with your recitation
TAs during recitation time to get points
• Do not leave unless being checked off

• Submit your recitation work to TEACH for backup purposes

• You MUST attend the recitation in which you registered (unless you received
permission from the TAs or me)

20

Assignments – 40%
• 5 in the term

• Two-week assignments

• Always something due Sunday by midnight

• All code must compile on ENGR – otherwise 0 (coding portion)

• Late Policy (only for coding portion!!!)
• 1 day late: 10% penalty

• 2 days late: 30% penalty

• 3 days or more: not accepted → 0

• No grace days…

21

Assignment Grading
• Assignment 1-4 are demoed (in person)

• Assignment 5 will be graded by the TAs on their own during final’s week

• Sign up for a demo for assignment 1-4 using links on TA Hours page on Canvas

• Demo within 2 weeks of the code due date, even if late
• Missing a demo, -10 pts

• Demoing outside 2 weeks w/o permission, -30%

• Assignments that are not demoed at the end of the term → 0 pts

22

Bi-Weekly Quizzes – 10%

• Due every other Sunday midnight (5 in total, on Canvas)

• Available from: after 2nd lecture to Sun 11:59 pm
• Canvas is very unforgiving about due times -- don't push it.

• T/F, and multiple choices, covering materials taught in that week

• 5 to 10 questions on each quiz, with a 60-minutes time limit

• 2 attempts for each quiz, keep the highest score

23

Look at the bi-weekly:

24

Mon Tue Wed Thur Fri Sat Sun

1) Asm N Due

Lecture Lecture 1) Quiz N+1 Due

Lecture Lecture
Asm N Demo

Due
1) Asm N+1 Due

Exams – 30%

• Mid Terms – 15%
• Week 5 Tuesday (Feb 6)

• Final – 15%
• Final’s Week: Wednesday 2:00 pm (Mar 20)

• Non-cumulative (but it builds on…)

• Same classroom

25

https://registrar.oregonstate.edu/final-examination-schedule-group-exams-class-meeting-hours

Grading Philosophy*

• A [93 or greater) mastery

• A- [90 – 93)

• B+ [87 – 90)

• B [83 – 87) stable/proficient

• B- [80 – 83)

• C+ [77 – 80)

• C [73 – 77) passable

• C- [70 – 73)

*Note: I do roundings☺ (i.e. 89.45 → 89.5 → 90 ☺)

26

How to Be Successful

• Read and listen carefully

• Start assignments early

• Be proactive with absences and issues that arise in the term

• Get help when you need it
• Make use of Discord and Office Hours

27

Recitation and Assignment Rules

• DO NOT SHARE YOUR WORK OR CODE WITH OTHER STUDENTS
• You are encouraged to discuss with others about the assignments but do not ask/give your

work to the others

• Do not copy other students’ work or resources available (without citations) in online

• Do not publish your work online

28

Recitation and Assignment Rules

• Plagiarism will be punished via the Office of Student
Life..
• E.g., getting F or zero point for the recitation/assignment

that matters with plagiarism…

• Please refer the Code of Student Conduct

29

AI Tool Usage in this class

• You must be the author of all work

• You may use AI to:
• generate abstract ideas

• polish or edit text you have drafted

• quiz yourself

• explain new or confusing concepts

• generate code snippets to solve unassigned example tasks

• You may NOT use AI to
• generate code snippets to solve a problem presented in a quiz, recitation, assignment, or exam

• draft the code implementation for an assignment

• If used, add a citation just like you would when you copy language or code from human
authors.

30

Tips to the Recitations/Assignments

• Study in a group (discussion is highly encouraged!)
• But please write code individually!

• Read the document thoroughly and follow the instructions

• Ask questions (Discord)

• Understand your time budget
• Plan ahead to finish the recitations/assignments on time

31

TAs

• Go see your TAs!!!

• Where: Varies

• When: Varies – check the TA Hours page on Canvas

32

Help Hierarchy

• Reread assignment, lecture slides, recitations, syllabus

• Google/Bing/Open a textbook

• Ask a friend

• Check Discord for relevant posts or create a new question

• Ask a TA
• You can attend office hours in person

• TAs will also be monitoring Discord

• Ask Roger

33

Lecture Topics:

• Course Intro

• Syllabus

• C Basics

34

C Basics

• Programming language: C
• C99 standard of the C language

• Compiler: GCC (installed on ENGR server)
• E.g. Compile a single C file (main.c) using the GCC C compiler (under the

C99 standard) to produce an executable file (main):
gcc -std=c99 main.c -o main

• -std=c99 allows declaration of variables anywhere in a block, otherwise, C
language forces to declare all the variables at the beginning of a block

35

C Basics – C Program Structure

• main() function: -- entry point into the program

• Include statements at the top of the file
• The standard file extension for header files in C is .h

• No using namespace std; anymore

#include <stdio.h> //standard I/O, writing to / reading from the console/file

int main(int argc, char** argv) {

return 0;

}

36

C Basics – printf()

• printf() – Print text to stdout (standard output stream)
• In C++, we use cout

• In C, we use printf()
• printf("This is a string I’m printing to stdout.\n");

37

C Basics – printf() (cont.)

• How to print the content of a variable?
• Passing a format string and accompanying arguments to printf()

• Format string: a template for the text to be printed. Contains format specifiers into which
specific value will later be inserted

• Format specifier: start with a %, followed by a character describing the data

• E.g.:

int x = 8;

printf("This is the value of x: %d\n", x);

38

C Basics – printf() (cont.)

• Common format specifiers:
• %d – indicates an int, to be printed as a signed decimal number

• %f – indicates a double, to be printed in fixed-point notation (e.g. 3.1415…)
• float arguments are cast as double

• %c – indicates a char, to be printed as a readable character

• %s – indicates a null-terminated string

• %p – indicates an address (or pointer)

• Lots more…

39

https://www.freecodecamp.org/news/format-specifiers-in-c/

C Basics – printf() (cont.)

• Print multiple values
• By inserting multiple format specifiers:

• E.g.

char* name = "Luke Skywalker";

double gpa = 3.75;

printf("%s's GPA is %f\n", name, gpa);

40

C Basics – scanf()

• How to accept input from standard input (keyboard)?
• In C++, we use cin

• i.e., cin >> var;

• In C, we use scanf()
• i.e., scanf(“%d”, &var);

• To read in more than one value, use multiple format specifiers
• i.e.,

printf(“Enter two integers: \n”);

scanf(“%d %d”, &var1, &var2);

41

C Basics – If/else and switch statements

• Similar to C++

if (a == 0) {

/* Do something. */

}

else if (b != 0) {

/* Do something different. */

}

else {

/* Do a third thing altogether.

*/

}

42

switch(grade) {

 case 'A’ :

 printf("Excellent!\n");

 break;

 case 'B’ :

 case 'C’ :

 printf("Well done\n");

 break;

 case 'D’ :

 printf("You passed\n");

 break;

 case 'F’ :

 printf("Better try again\n");

 break;

 default :

 printf("Invalid grade\n");

}

C Basics – Loops

• Similar to C++
• for, while, do-while

43

int i;

for (i = 0; i < 32; i++) {

 /* Do something 32 times. */

}

while (i != 16) {

 /* Do something repeatedly until i is 16. */

}

do{

 /* Do something repeatedly until i is 16. */

}while (i != 16);

C Basics – Functions

• No Class or Class functions

44

#include <stdio.h>

/* This could be in a separate .h file too */

void foo(int);

/* This could be in a separate .c file */

void foo(int x) {

printf("foo was passed this argument: %d\n", x);

}

int main(int argc, char** argv) {

foo(2);

}

C Basics – Functions (cont.)

• Unlike C++, C has no reference types!

• Can only pass by value (or by pointers)

45

#include <stdio.h>

void foo(int *x) {

printf("foo was passed this argument: %d\n", *x);

}

int main(int argc, char** argv) {

int val = 5;

 foo(&val);

}

To-dos before next lecture

• Read through the syllabus

• Start the recitation 1

46

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Course Intro
	Slide 5: Data Structure
	Slide 6: Data Structures Classification
	Slide 7: Data Structure Examples
	Slide 8: A real-life example: Auto-complete
	Slide 9: A real-life example: Auto-complete
	Slide 10: Goals:
	Slide 11: Caveat
	Slide 12: Lecture Topics:
	Slide 13: Syllabus
	Slide 14: Course Structure
	Slide 15: Course Information
	Slide 16: Basics
	Slide 17: More Basics…
	Slide 18: Attendance
	Slide 19: Grade Breakdown
	Slide 20: Recitations – 20%
	Slide 21: Assignments – 40%
	Slide 22: Assignment Grading
	Slide 23: Bi-Weekly Quizzes – 10%
	Slide 24: Look at the bi-weekly:
	Slide 25: Exams – 30%
	Slide 26: Grading Philosophy*
	Slide 27: How to Be Successful
	Slide 28: Recitation and Assignment Rules
	Slide 29: Recitation and Assignment Rules
	Slide 30: AI Tool Usage in this class
	Slide 31: Tips to the Recitations/Assignments
	Slide 32: TAs
	Slide 33: Help Hierarchy
	Slide 34: Lecture Topics:
	Slide 35: C Basics
	Slide 36: C Basics – C Program Structure
	Slide 37: C Basics – printf()
	Slide 38: C Basics – printf() (cont.)
	Slide 39: C Basics – printf() (cont.)
	Slide 40: C Basics – printf() (cont.)
	Slide 41: C Basics – scanf()
	Slide 42: C Basics – If/else and switch statements
	Slide 43: C Basics – Loops
	Slide 44: C Basics – Functions
	Slide 45: C Basics – Functions (cont.)
	Slide 46: To-dos before next lecture

