
CS 261-020
Data Structures

Lecture 10

BST Operations, Complexity & Traversal

Begin AVL Trees

2/20/24, Tuesday

1

Odds and Ends

• Recitation 7 posted

• Don’t forget to demo your assignment 2!

2

Lecture Topics:

• BST Operations:
• Removing an element

• Runtime Complexity of BST operations

• BST traversals

3

BST Operations: Removing an element

4

• BST removal: depend on the number of
children that element’s BST node has

• If the element to be removed is a leaf
node: (i.e., 2)
• simply free that node and update its parent

to have a NULL child

• If the element to be removed is stored in
a node with just a single child: (i.e., 72)
• simply free that node and move its child to

become a child of the node’s parent

BST Operations: Removing an element

5

• If the element to be removed is stored in
a node with two children: (i.e., 64):
• need to find that node’s in-order successor

(the next node in in-order traversal of the
BST).

• Line up all keys in ascending order:

• 2 10 17 30 32 64 72 73 75 77 90

• The in-order successor for a node with key k,
is the node to the very next key after k in this
ordered list of keys
• i.e., the in-order successor of root (64) is the node

with key 72

BST Operations: Removing an element

6

• If the element to be removed is stored in
a node with two children: (i.e., 64):

• In BST, a node N’s in-order successor is always
the leftmost node in N’s right subtree.
• branch right in the tree from N, and then continue

to branch left until we can no longer do so, The
last node we reach will be N’s in-order successor

BST Operations: Removing an element

7

• If the element to be removed is stored in a node with
two children: (i.e., 64):

• Denote N’s parent node as PN (if N is the root
node, PN will represent the root pointer for the
entire tree)

• Find N’s in-order successor S. Denote S’s parent
node as PS.

• Update pointers to give N’s children to S
• N’s left child becomes S’s left child.

• S’s right child (which might be NULL) becomes PS’s left child.

• N’s right child becomes S’s right child.

• Update PN to replace N with S.

• Specifically, S becomes PN’s left or right child, as appropriate, or
the root of the tree, if N was the root.

• Free the node N.

BST Operations: Removing an element

8

• If the element to be removed is stored in a node with two children:
(i.e., 64):

BST Operations: Removing an element

9

• Pseudocode:
remove(bst, k):

N, PN ← find the node to be removed and its parent

based on key k, as in the find() function

if N has no children:

update PN to point to NULL instead of N

else if N has one child:

update PN to point to N’s child instead of N

else:

S, PS ← find N’s in-order successor and its

parent, as described above

S.left ← N.left

if S is not N.right:

PS.left ← S.right

S.right ← N.right

update PN to point to S instead of N

free N

BST Operations: Removing an element

10

• Example: Remove the root node (64)

BST Operations: Removing an element

11

• Example: Remove the root node (64)
• 1. identify that node’s in-order successor (S) and its parent (PS):

BST Operations: Removing an element

12

• Example: Remove the root node (64)
• 2. update pointers so that S replaces N and S’s right child replaces S as PS’s child:

BST Operations: Removing an element

13

• Example: Remove the root node (64)
• 3. The end result is a tree with the root node (i.e. N) removed.

• note that the BST property is maintained by this removal:

Lecture Topics:

• BST Operations:
• Finding an element

• Inserting a new element

• Removing an element

• Runtime Complexity of BST operations

• BST traversals

14

Runtime Complexity of BST Operations

15

• Main factor of all 3 BST operations: search within the tree
• find(): search for the query key

• insert(): search for the location at which to insert

• remove(): search for both query key and its in-order successor

• Search begins at the root, moves down one level at each iteration,
until reaches the bottom (or finds the node it is searching for)
• Number of search iteration == the height of the tree, h

• Thus, runtime complexity for searching in all 3 operations: O(h)

Runtime Complexity of BST Operations

16

• Extra work done besides searching:
• find(): none
• insert(): allocate the new node, and update its new parent → O(1)
• remove(): update a few pointers → O(1)

• Thus, the runtime complexity:
• find() – O(h)
• insert() – O(h)
• remove() – O(h)

• What is the range of h if the BST has n nodes?
• Depending on the order of insertion, h can be [log(n), n]

→ limit the height of the BST! (more later)

Lecture Topics:

• BST Operations:
• Finding an element

• Inserting a new element

• Removing an element

• Runtime Complexity of BST operations

• BST traversals

17

Binary Tree Traversal

18

• How to print the value stored at each node in a binary tree?

• A tree traversal: a method for visiting each node in a tree exactly
once and performing some operation or processing at each node
when it’s visited

Binary Tree Traversal

19

• Two types of tree traversal:
• Depth-first: explores a tree subtree by subtree, visiting all of a node’s

descendants before visiting any of its siblings.
• moves as far downward in the tree as it can go before moving across in the tree

• Breadth-first: explores a tree level by level, visiting every node at a given
depth in the tree before moving downward
• moves as far across the tree as it can go before moving down in the tree

Binary Tree Traversal: Depth-first

20

• Denote using N, L, and R:
• N – visit/process the current node itself

• L – traverse the left subtree of the current node

• R – traverse the right subtree of the current node

• Three kinds of depth-first traversal:
• Pre-order traversal (NLR): process the current node before traversing either

of its subtrees

• In-order traversal (LNR): traverse the current node’s left subtree before
processing the node itself, and then traverse the node’s right subtree

• Post-order traversal (LRN): traverse both of the current node’s subtrees (left,
then right) before processing the node itself

Binary Tree Traversal: Depth-first

21

• Three kinds of depth-first traversal:
• Pre-order traversal (NLR)

• 64 30 10 2 17 32 75 72 73 77 90

• In-order traversal (LNR)
• 2 10 17 30 32 64 72 73 75 77 90

• Post-order traversal (LRN)
• 2 17 10 32 30 73 72 90 77 75 64

• Note: in-order traversal processes the
nodes in sorted order!

Binary Tree Traversal: Depth-first

22

• Pseudocode of three kinds of depth-first traversal: using recursion
• Pre-order traversal (NLR)

preOrder(N):
if N is not NULL:

process N
preOrder(N.left)
preOrder(N.right)

• In-order traversal (LNR)
inOrder(N):

if N is not NULL:
inOrder(N.left)
process N
inOrder(N.right)

• Post-order traversal (LRN)
postOrder(N):

if N is not NULL:
preOrder(N.left)
preOrder(N.right)
process N

Binary Tree Traversal: Breadth-first

23

• One main kind of breadth-first traversal: level-order traversal

• Using a level-order traversal, the nodes are processed in this
order: 64, 32, 80, 16, 48, 72, 88, 56, 84, 96.

Binary Tree Traversal: Breadth-first

24

• Pseudocode of level-order traversal: using a queue
levelOrder(bst):

q = new, empty queue

enqueue(q, bst.root)

while q is not empty:

N = dequeue(q)

if N is not NULL:

process N

enqueue(q, N.left)

enqueue(q, N.right)

Lecture Topics:

• AVL Trees
• Self-balancing BST

25

The Balance of BSTs

26

• Balance of BSTs:
• All nodes have depths approximately log(n) or less

• Balance is important – primary operations on BSTs all have O(h) runtime complexity,
where h is the height of the tree.

• With balanced BST, h → log(n), then O(h) will be fast

• With unbalanced BST, h → n, then O(h) will be slow

• Problem: plain BSTs cannot ensure itself is balanced

The Balance of BSTs

27

• Exercise:
• Create a BST by inserting the elements with the following keys (order as they are):

• 4 2 6 1 3 5 7

• 7 6 5 4 3 2 1

• What do you notice?

The Balance of BSTs

28

• For a given set of keys, the shape of a BST depends on the order in which
those keys are inserted into the tree.
• Left: perfectly balanced, operations runtime close to O (log n)

• Right: very unbalanced, operations runtime close to O (n)

The Balance of BSTs

29

• Self-balancing BST: does “extra work” to ensure that the tree is more-or-
less balanced as elements are inserted and removed.
• *Extra work – beyond that done by a plain BST

• A typical type of self-balancing BST known as an AVL tree

Height Balance

30

• Height Balance: a measurable form of BST balance

• A BST is height balanced if, at every node in the tree, the subtree heights
of the node’s left and right subtrees differ by at most 1

• A height-balanced BST is guaranteed to have an overall height that’s within
a constant factor of log(n)
• operations in a height-balanced BST are guaranteed to have O(log n) runtime

complexity.

Balance Factor

31

• A BST node’s balance factor – a metric to figure out whether the subtree
rooted at that node is height balanced.

• the balance factor of the node N:
• balanceFactor(N) = height(N.right) - height(N.left)

• the height of a NULL node (i.e. an empty subtree) is -1

Balance Factor

32

• An entire BST is height balanced if every node in the tree has a balance
factor of -1, 0, or 1

• If a node has a negative balance factor (i.e. balanceFactor(N) < 0), we call it
left-heavy

• If a node has a positive balance factor (i.e. balanceFactor(N) > 0), we call it
right-heavy

Height Balance and Balance Factor

33

• Height-balanced, or un-balanced? Write down balance factor for each node.

Restructuring AVL Trees via Rotations

34

• The AVL tree is one of several existing types of self-balancing BST.
• AVL is derived from the initials of the names of the tree’s inventors: Adelson-Velsky and Landis.

• Another popular one is the red-black tree.

• An AVL tree’s operations include mechanisms to ensure that the tree always exhibits
height balance
• check the height balance of the tree after each insertion and removal

• perform rebalancing operations known as rotations whenever height balance is lost

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: BST Operations: Removing an element
	Slide 5: BST Operations: Removing an element
	Slide 6: BST Operations: Removing an element
	Slide 7: BST Operations: Removing an element
	Slide 8: BST Operations: Removing an element
	Slide 9: BST Operations: Removing an element
	Slide 10: BST Operations: Removing an element
	Slide 11: BST Operations: Removing an element
	Slide 12: BST Operations: Removing an element
	Slide 13: BST Operations: Removing an element
	Slide 14: Lecture Topics:
	Slide 15: Runtime Complexity of BST Operations
	Slide 16: Runtime Complexity of BST Operations
	Slide 17: Lecture Topics:
	Slide 18: Binary Tree Traversal
	Slide 19: Binary Tree Traversal
	Slide 20: Binary Tree Traversal: Depth-first
	Slide 21: Binary Tree Traversal: Depth-first
	Slide 22: Binary Tree Traversal: Depth-first
	Slide 23: Binary Tree Traversal: Breadth-first
	Slide 24: Binary Tree Traversal: Breadth-first
	Slide 25: Lecture Topics:
	Slide 26: The Balance of BSTs
	Slide 27: The Balance of BSTs
	Slide 28: The Balance of BSTs
	Slide 29: The Balance of BSTs
	Slide 30: Height Balance
	Slide 31: Balance Factor
	Slide 32: Balance Factor
	Slide 33: Height Balance and Balance Factor
	Slide 34: Restructuring AVL Trees via Rotations

