
CS 261-020
Data Structures

Lecture 11

AVL Trees

2/22/24, Thursday

1

Odds and Ends

• This Friday is the last day to demo your assignment 2 w/o penalty!

• Due Sunday 2/25 11:59 pm:
• Assignment 3

• Questions?

2

Lecture Topics:

• AVL Trees
• Self-balancing BST

3

The Balance of BSTs

4

• Balance of BSTs:
• All nodes have depths approximately log(n) or less

• Balance is important – primary operations on BSTs all have O(h) runtime complexity,
where h is the height of the tree.

• With balanced BST, h → log(n), then O(h) will be fast

• With unbalanced BST, h → n, then O(h) will be slow

• Problem: plain BSTs cannot ensure itself is balanced

Height Balance

5

• Height Balance: a measurable form of BST balance

• A BST is height balanced if, at every node in the tree, the subtree heights
of the node’s left and right subtrees differ by at most 1

• A height-balanced BST is guaranteed to have an overall height that’s within
a constant factor of log(n)
• operations in a height-balanced BST are guaranteed to have O(log n) runtime

complexity.

Balance Factor

6

• A BST node’s balance factor – a metric to figure out whether the subtree
rooted at that node is height balanced.

• the balance factor of the node N:
• balanceFactor(N) = height(N.right) - height(N.left)

• the height of a NULL node (i.e. an empty subtree) is -1

Height Balance and Balance Factor

7

• Height-balanced, or un-balanced? Write down balance factor for each node.

Restructuring AVL Trees via Rotations

8

• The AVL tree is one of several existing types of self-balancing BST.
• AVL is derived from the initials of the names of the tree’s inventors: Adelson-Velsky and Landis.

• Another popular one is the red-black tree.

• An AVL tree’s operations include mechanisms to ensure that the tree always exhibits
height balance
• check the height balance of the tree after each insertion and removal

• perform rebalancing operations known as rotations whenever height balance is lost

Restructuring AVL Trees via Rotations

9

• A rotation: an operation that restructures an isolated region of the tree by
performing a limited number of pointer updates that result in one node
moving “upwards” in the tree and another node moving “downwards.”
• preserve the BST property among all nodes in the tree

• Sometimes, a single rotation will be enough to restore height balance.

• Sometimes, a double rotation will be needed.

Restructuring AVL Trees via Rotations

10

• Each rotation has a center and a direction

• The center is the node at which the rotation is performed

• Direction: perform either a left rotation or a right rotation around this center node
• A left rotation moves nodes in a “counterclockwise” direction, with the center moving downwards

and nodes to its right moving upwards.

• A right rotation moves nodes in a “clockwise” direction, with the center moving downwards and
nodes to its left moving upwards

How to rotate?

11

• A rotation (i.e. single or double) will be needed any time
an insertion into or removal from an AVL tree that leaves
the tree (temporarily) with a node whose balance factor
is either -2 or 2

• In other words, a rotation is needed when height balance
is lost at a specific node in the tree. Let’s call this node N.

• If N has a balance factor of -2, this means N is left-heavy.

• If N has a balance factor of 2, this means N is right-heavy.

• Regardless of the direction of N’s heaviness, let’s refer to
the heavier of N’s children as C

• The node C itself will have a balance factor of -1, 0, or 1

In class activity: How to rotate?

12

• Get into small groups, on the worksheet, for each unbalanced tree,
• Determine whether a single rotation / a double rotation is needed

• draw the height-balanced BSTs after rotating

• Can you generalize the situations when a single rotation is needed?

• Can you generalize the situations when a double rotation is needed?

In class activity: How to rotate?

13

In class activity: How to rotate?

14

In class activity: How to rotate?

15

In class activity: How to rotate?

16

Single vs. Double Rotation

17

• If N and C are heavy in the same direction, then a single rotation is
needed around N in the opposite direction as N’s heaviness

Single vs. Double Rotation

18

• If N and C are heavy in opposite directions, then a double rotation is
needed
• If N is left-heavy and C is right-heavy, then we first rotate left around C then right

around N.

• If N is right-heavy and C is left-heavy, then we first rotate right around C then left
around N

Single vs. Double Rotation

19

Single Rotations

20

• Recall: a single rotation is needed if N and C are heavy in the same direction.

• Single rotation: always centered around the node N (where height balance is
lost), and the rotation is in the opposite direction of the imbalance

• Two situations:
• Left-left imbalance – N is left-heavy and N’s left child C is also left-heavy

• Cause: insert an element into C’s left subtree OR remove an element from N’s right subtree

• To fix: apply a single right rotation around N.

• Right-right imbalance – N is right-heavy and N’s right child C is also right-heavy
• Cause: insert an element into C’s right subtree OR remove an element from N’s left subtree

• To fix: apply a single left rotation around N

Single Rotations

21

• Visualize a single right rotation:

• In a right rotation around N:
• N will become the right child of its current

left child C.

• C’s current right child will become N’s left
child.

• If N has a parent PN, then C will replace N
as PN’s child. Otherwise, if N was the root
of the entire tree, C will replace N as the
root

Double Rotations

22

• Recall: a double rotation is needed if N and C are heavy in the opposite
direction.

• A double rotation consists of two single rotations:
• The first one is always centered around N’s child C (align imbalances on the same side)
• The second is always centered around N itself (where height balance is lost)

• Two situations:
• Left-right imbalance – N is left-heavy and N’s left child C is right-heavy

• Cause: insert an element into C’s right subtree OR remove an element from N’s right subtree
• To fix: apply a left rotation around C followed by a right rotation around N

• Right-left imbalance – N is right-heavy and N’s right child C is left-heavy
• Cause: insert an element into C’s left subtree OR remove an element from N’s left subtree
• To fix: apply a right rotation around C followed by a left rotation around N

Double Rotations

23

• Example:

Double Rotations

24

• Visualize a left-right imbalance:

• First rotation: Center around C,
opposite direction of C’s imbalance,
i.e., a left rotation around C:
• G moves up in the tree to replace C as N’s

left child.

• C moves down in the tree to become G’s
left child.

• LG becomes C’s right child.

Double Rotations

25

• Visualize a left-right imbalance:

• Second rotation: Center around N,
opposite direction of N’s imbalance, i.e., a
right rotation around N:
• G moves up in the tree to become the new

root of this subtree
• N moves down in the tree to become G’s

right child.
• If N had a parent, PN, G would replace N as

the child of PN. If N was the root of the
entire tree, G would become the new root

Double Rotations

26

• Visualize a left-right imbalance:

AVL Tree operations

27

• Note: an AVL tree will only ever need to be
rebalanced in response to an operation that
changes the structure of the tree
• i.e. after inserting a new element or removing an

element

• Rebalancing an AVL tree is a bottom-up
operation
• begins at the location in the tree where its

structure was changed, and proceeds upwards
from that location towards the root

AVL Tree operations

28

• Need a mechanism to retrace a path upwards from a given node back to the root

• How: by adding a pointer to the AVL tree node structure that points to the node’s parent
• Then, retracing the path upwards from a node to the tree’s root is as simple as following these parent

pointers up the tree

• Add an additional field that allows us to track the height of the subtree rooted at each node.
struct avl_node {

int key;

void* value;

int height;

struct avl_node* left;

struct avl_node* right;

struct avl_node* parent;

};

• When a node doesn’t have a parent, parent = NULL.

• Specifically, the root node of the tree will always have a NULL parent pointer

AVL Tree operations

29

• Pseudocode for a right rotation:

• rotateRight(N):
C ← N.left

N.left ← C.right

if N.left is not NULL:

N.left.parent ← N

C.right ← N

C.parent ← N.parent

N.parent ← C

updateHeight(N)

updateHeight(C)

return C

AVL Tree operations

30

• Pseudocode for a left rotation:

• rotateLeft(N):
C ← N.right

N.right ← C.left

if N.right is not NULL:

N.right.parent ← N

C.left ← N

C.parent ← N.parent

N.parent ← C

updateHeight(N)

updateHeight(C)

return C
updateHeight(N):

 N.height ← MAX(height(N.left), height(N.right)) + 1

AVL Tree operations

31

• How these pieces work:
• Rotating left or right around a given node: simply involves trading a few pointers.

• After every rotation, re-compute the subtree heights for both the node that moved
downwards during the rotation (i.e. N) and the node that moved upwards during
the rotation (i.e. C).

AVL Tree operations

32

• pseudocode for the insert operation:

avlInsert(tree, key, value):
insert key, value into tree like normal BST insertion
N ← newly inserted node
P ← N.parent
while P is not NULL:

rebalance(P)
P ← P.parent

• pseudocode for the remove operation:

avlRemove(tree, key):
remove key from tree like normal BST removal
P ← lowest modified node (e.g. parent of removed node)
while P is not NULL:

rebalance(P)
P ← P.parent

The key piece: rebalance() function, which performs rebalancing at each node:

AVL Tree operations

33

• Pseudocode for rebalance():

• rebalance(N):

 if balanceFactor(N) < -1:

 if balanceFactor(N.left) > 0:

 N.left ← rotateLeft(N.left)

 newSubtreeRoot ← rotateRight(N)

 if newSubtreeRoot.parent is not NULL

 if newSubtreeRoot.parent.left is N:

 newSubtreeRoot.parent.left ← newSubtreeRoot

 else:

 newSubtreeRoot.parent.right ← newSubtreeRoot

 else if balanceFactor(N) > 1:

 if balanceFactor(N.right) < 0:

 N.right ← rotateRight(N.right)

 newSubtreeRoot ← rotateLeft(N)

 if newSubtreeRoot.parent is not NULL

 if newSubtreeRoot.parent.left is N:

 newSubtreeRoot.parent.left ← newSubtreeRoot

 else:

 newSubtreeRoot.parent.right ← newSubtreeRoot

else:

 updateHeight(N)

Runtime Complexity of AVL Tree operations

34

• Single rotation (rotateLeft() and rotateRight()):
• A limited number of pointers is updated
• The height of two nodes is updated
• Thus, O(1)

• rebalance() :
• For each call, at most two rotations.
• Thus, O(1)

• How many times will rebalance() be called?
• once per node on a traversal upwards to the root of the tree
• Thus, the maximum number of times rebalance() can be called is h (height of the tree)

• If a tree is height balanced, then h = log(n). Thus, the AVL tree’s insert and remove
operations each have overall complexity of O(h) = O(log n)

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: The Balance of BSTs
	Slide 5: Height Balance
	Slide 6: Balance Factor
	Slide 7: Height Balance and Balance Factor
	Slide 8: Restructuring AVL Trees via Rotations
	Slide 9: Restructuring AVL Trees via Rotations
	Slide 10: Restructuring AVL Trees via Rotations
	Slide 11: How to rotate?
	Slide 12: In class activity: How to rotate?
	Slide 13: In class activity: How to rotate?
	Slide 14: In class activity: How to rotate?
	Slide 15: In class activity: How to rotate?
	Slide 16: In class activity: How to rotate?
	Slide 17: Single vs. Double Rotation
	Slide 18: Single vs. Double Rotation
	Slide 19: Single vs. Double Rotation
	Slide 20: Single Rotations
	Slide 21: Single Rotations
	Slide 22: Double Rotations
	Slide 23: Double Rotations
	Slide 24: Double Rotations
	Slide 25: Double Rotations
	Slide 26: Double Rotations
	Slide 27: AVL Tree operations
	Slide 28: AVL Tree operations
	Slide 29: AVL Tree operations
	Slide 30: AVL Tree operations
	Slide 31: AVL Tree operations
	Slide 32: AVL Tree operations
	Slide 33: AVL Tree operations
	Slide 34: Runtime Complexity of AVL Tree operations

