
CS 261-020
Data Structures

Lecture 11

AVL Trees

2/22/24, Thursday
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Odds and Ends

• This Friday is the last day to demo your assignment 2 w/o penalty!

• Due Sunday 2/25 11:59 pm:
• Assignment 3

• Questions? 
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Lecture Topics:

• AVL Trees
• Self-balancing BST
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The Balance of BSTs
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• Balance of BSTs: 
• All nodes have depths approximately log(n) or less

• Balance is important – primary operations on BSTs all have O(h) runtime complexity, 
where h is the height of the tree.

• With balanced BST, h → log(n), then O(h) will be fast

• With unbalanced BST, h → n, then O(h) will be slow

• Problem: plain BSTs cannot ensure itself is balanced



Height Balance 
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• Height Balance: a measurable form of BST balance

• A BST is height balanced if, at every node in the tree, the subtree heights 
of the node’s left and right subtrees differ by at most 1

• A height-balanced BST is guaranteed to have an overall height that’s within 
a constant factor of log(n)
• operations in a height-balanced BST are guaranteed to have O(log n) runtime 

complexity.



Balance Factor
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• A BST node’s balance factor – a metric to figure out whether the subtree 
rooted at that node is height balanced. 

• the balance factor of the node N:
• balanceFactor(N) = height(N.right) - height(N.left)

• the height of a NULL node (i.e. an empty subtree) is -1



Height Balance and Balance Factor
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• Height-balanced, or un-balanced? Write down balance factor for each node.



Restructuring AVL Trees via Rotations
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• The AVL tree is one of several existing types of self-balancing BST.
• AVL is derived from the initials of the names of the tree’s inventors: Adelson-Velsky and Landis.

• Another popular one is the red-black tree.

• An AVL tree’s operations include mechanisms to ensure that the tree always exhibits 
height balance
• check the height balance of the tree after each insertion and removal 

• perform rebalancing operations known as rotations whenever height balance is lost



Restructuring AVL Trees via Rotations
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• A rotation: an operation that restructures an isolated region of the tree by 
performing a limited number of pointer updates that result in one node 
moving “upwards” in the tree and another node moving “downwards.” 
• preserve the BST property among all nodes in the tree

• Sometimes, a single rotation will be enough to restore height balance.

• Sometimes, a double rotation will be needed.



Restructuring AVL Trees via Rotations
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• Each rotation has a center and a direction

• The center is the node at which the rotation is performed

• Direction: perform either a left rotation or a right rotation around this center node
• A left rotation moves nodes in a “counterclockwise” direction, with the center moving downwards 

and nodes to its right moving upwards.

• A right rotation moves nodes in a “clockwise” direction, with the center moving downwards and 
nodes to its left moving upwards



How to rotate?
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• A rotation (i.e. single or double) will be needed any time 
an insertion into or removal from an AVL tree that leaves 
the tree (temporarily) with a node whose balance factor 
is either -2 or 2

• In other words, a rotation is needed when height balance 
is lost at a specific node in the tree.  Let’s call this node N.

• If N has a balance factor of -2, this means N is left-heavy.  

• If N has a balance factor of 2, this means N is right-heavy.  

• Regardless of the direction of N’s heaviness, let’s refer to 
the heavier of N’s children as C

• The node C itself will have a balance factor of -1, 0, or 1



In class activity: How to rotate?
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• Get into small groups, on the worksheet, for each unbalanced tree, 
• Determine whether a single rotation / a double rotation is needed

• draw the height-balanced BSTs after rotating

• Can you generalize the situations when a single rotation is needed?

• Can you generalize the situations when a double rotation is needed?  



In class activity: How to rotate?
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In class activity: How to rotate?
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In class activity: How to rotate?
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In class activity: How to rotate?

16



Single vs. Double Rotation
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• If N and C are heavy in the same direction, then a single rotation is 
needed around N in the opposite direction as N’s heaviness



Single vs. Double Rotation
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• If N and C are heavy in opposite directions, then a double rotation is 
needed
• If N is left-heavy and C is right-heavy, then we first rotate left around C then right 

around N.

• If N is right-heavy and C is left-heavy, then we first rotate right around C then left 
around N



Single vs. Double Rotation
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Single Rotations
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• Recall: a single rotation is needed if N and C are heavy in the same direction. 

• Single rotation: always centered around the node N (where height balance is 
lost), and the rotation is in the opposite direction of the imbalance

• Two situations:
• Left-left imbalance – N is left-heavy and N’s left child C is also left-heavy

• Cause: insert an element into C’s left subtree OR remove an element from N’s right subtree

• To fix: apply a single right rotation around N.

• Right-right imbalance – N is right-heavy and N’s right child C is also right-heavy
• Cause: insert an element into C’s right subtree OR remove an element from N’s left subtree

• To fix: apply a single left rotation around N



Single Rotations
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• Visualize a single right rotation: 

• In a right rotation around N:
• N will become the right child of its current 

left child C.

• C’s current right child will become N’s left 
child.

• If N has a parent PN, then C will replace N 
as PN’s child.  Otherwise, if N was the root 
of the entire tree, C will replace N as the 
root



Double Rotations
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• Recall: a double rotation is needed if N and C are heavy in the opposite 
direction. 

• A double rotation consists of two single rotations:
• The first one is always centered around N’s child C (align imbalances on the same side)
• The second is always centered around N itself (where height balance is lost)

• Two situations:
• Left-right imbalance – N is left-heavy and N’s left child C is right-heavy

• Cause: insert an element into C’s right subtree OR remove an element from N’s right subtree
• To fix: apply a left rotation around C followed by a right rotation around N

• Right-left imbalance – N is right-heavy and N’s right child C is left-heavy
• Cause: insert an element into C’s left subtree OR remove an element from N’s left subtree
• To fix: apply a right rotation around C followed by a left rotation around N



Double Rotations
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• Example: 



Double Rotations
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• Visualize a left-right imbalance: 

• First rotation: Center around C, 
opposite direction of C’s imbalance, 
i.e., a left rotation around C:
• G moves up in the tree to replace C as N’s 

left child.

• C moves down in the tree to become G’s 
left child.

• LG becomes C’s right child.



Double Rotations
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• Visualize a left-right imbalance: 

• Second rotation: Center around N, 
opposite direction of N’s imbalance, i.e., a 
right rotation around N:
• G moves up in the tree to become the new 

root of this subtree
• N moves down in the tree to become G’s 

right child.
• If N had a parent, PN, G would replace N as 

the child of PN. If N was the root of the 
entire tree, G would become the new root



Double Rotations
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• Visualize a left-right imbalance: 



AVL Tree operations
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• Note: an AVL tree will only ever need to be 
rebalanced in response to an operation that 
changes the structure of the tree 
• i.e. after inserting a new element or removing an 

element

• Rebalancing an AVL tree is a bottom-up 
operation
• begins at the location in the tree where its 

structure was changed, and proceeds upwards 
from that location towards the root



AVL Tree operations
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• Need a mechanism to retrace a path upwards from a given node back to the root

• How: by adding a pointer to the AVL tree node structure that points to the node’s parent
• Then, retracing the path upwards from a node to the tree’s root is as simple as following these parent 

pointers up the tree

• Add an additional field that allows us to track the height of the subtree rooted at each node.
struct avl_node {

int key;

void* value;

int height;

struct avl_node* left;

struct avl_node* right;

struct avl_node* parent;

};

• When a node doesn’t have a parent, parent = NULL.  

• Specifically, the root node of the tree will always have a NULL parent pointer



AVL Tree operations
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• Pseudocode for a right rotation: 

• rotateRight(N):
C ← N.left

N.left ← C.right

if N.left is not NULL:

N.left.parent ← N

C.right ← N

C.parent ← N.parent

N.parent ← C

updateHeight(N)

updateHeight(C)

return C



AVL Tree operations
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• Pseudocode for a left rotation: 

• rotateLeft(N):
C ← N.right

N.right ← C.left

if N.right is not NULL:

N.right.parent ← N

C.left ← N

C.parent ← N.parent

N.parent ← C

updateHeight(N)

updateHeight(C)

return C
updateHeight(N):

 N.height ← MAX(height(N.left), height(N.right)) + 1



AVL Tree operations
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• How these pieces work:
• Rotating left or right around a given node: simply involves trading a few pointers.

• After every rotation, re-compute the subtree heights for both the node that moved 
downwards during the rotation (i.e. N) and the node that moved upwards during 
the rotation (i.e. C).



AVL Tree operations
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• pseudocode for the insert operation:

avlInsert(tree, key, value):
insert key, value into tree like normal BST insertion
N ← newly inserted node
P ← N.parent
while P is not NULL:

rebalance(P)
P ← P.parent

• pseudocode for the remove operation:

avlRemove(tree, key):
remove key from tree like normal BST removal
P ← lowest modified node (e.g. parent of removed node)
while P is not NULL:

rebalance(P)
P ← P.parent

The key piece: rebalance() function, which performs rebalancing at each node:



AVL Tree operations
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• Pseudocode for rebalance():

• rebalance(N):

 if balanceFactor(N) < -1:

  if balanceFactor(N.left) > 0:

   N.left ← rotateLeft(N.left)

  newSubtreeRoot ← rotateRight(N)

  if newSubtreeRoot.parent is not NULL

   if newSubtreeRoot.parent.left is N:

    newSubtreeRoot.parent.left ← newSubtreeRoot

   else:

    newSubtreeRoot.parent.right ← newSubtreeRoot

 else if balanceFactor(N) > 1:

  if balanceFactor(N.right) < 0:

   N.right ← rotateRight(N.right)

  newSubtreeRoot ← rotateLeft(N)

  if newSubtreeRoot.parent is not NULL

   if newSubtreeRoot.parent.left is N:

    newSubtreeRoot.parent.left ← newSubtreeRoot

   else:

    newSubtreeRoot.parent.right ← newSubtreeRoot

else:

 updateHeight(N)



Runtime Complexity of AVL Tree operations

34

• Single rotation (rotateLeft() and rotateRight()): 
• A limited number of pointers is updated
• The height of two nodes is updated
• Thus, O(1)

• rebalance() : 
• For each call, at most two rotations. 
• Thus, O(1)

• How many times will rebalance() be called?
• once per node on a traversal upwards to the root of the tree
• Thus, the maximum number of times rebalance() can be called is h (height of the tree)

• If a tree is height balanced, then h = log(n). Thus, the AVL tree’s insert and remove 
operations each have overall complexity of O(h) = O(log n)
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