CS 261-020
Data Structures

Lecture 11
AVL Trees
2/22/24, Thursday
Odds and Ends

• This Friday is the last day to demo your assignment 2 w/o penalty!

• Due Sunday 2/25 11:59 pm:
 • Assignment 3

• Questions?
Lecture Topics:

• AVL Trees
 • Self-balancing BST
The Balance of BSTs

• **Balance** of BSTs:
 • All nodes have depths approximately $\log(n)$ or less

• Balance is important – primary operations on BSTs all have $O(h)$ runtime complexity, where h is the height of the tree.

• With balanced BST, $h \rightarrow \log(n)$, then $O(h)$ will be fast

• With unbalanced BST, $h \rightarrow n$, then $O(h)$ will be slow

• Problem: plain BSTs cannot ensure itself is balanced
Height Balance

- *Height Balance*: a measurable form of BST balance

- A BST is **height balanced** if, at every node in the tree, the subtree heights of the node’s left and right subtrees differ by at most 1

- A height-balanced BST is guaranteed to have an overall height that's within a constant factor of \(\log(n)\)
 - operations in a height-balanced BST are guaranteed to have \(O(\log n)\) runtime complexity.
Balance Factor

- A BST node’s **balance factor** – a metric to figure out whether the subtree rooted at that node is height balanced.

- the balance factor of the node N:
 - \(\text{balanceFactor}(N) = \text{height}(N.\text{right}) - \text{height}(N.\text{left}) \)

- the height of a NULL node (i.e. an empty subtree) is -1
Height Balance and Balance Factor

• Height-balanced, or un-balanced? Write down balance factor for each node.
Restructuring AVL Trees via Rotations

• The AVL tree is one of several existing types of self-balancing BST.
 • AVL is derived from the initials of the names of the tree’s inventors: Adelson-Velsky and Landis.
 • Another popular one is the red-black tree.

• An AVL tree’s operations include mechanisms to ensure that the tree always exhibits height balance
 • check the height balance of the tree after each insertion and removal
 • perform rebalancing operations known as rotations whenever height balance is lost
Restructuring AVL Trees via Rotations

• A rotation: an operation that restructures an isolated region of the tree by performing a limited number of *pointer updates* that result in one node moving “upwards” in the tree and another node moving “downwards.”
 • preserve the BST property among all nodes in the tree

• Sometimes, a *single rotation* will be enough to restore height balance.
• Sometimes, a *double rotation* will be needed.
Restructuring AVL Trees via Rotations

- Each rotation has a **center** and a **direction**
- The center is the node **at which the rotation is performed**
- Direction: perform either a left rotation or a right rotation around this center node
 - A left rotation moves nodes in a “counterclockwise” direction, with the center moving downwards and nodes to its right moving upwards.
 - A right rotation moves nodes in a “clockwise” direction, with the center moving downwards and nodes to its left moving upwards
How to rotate?

- A rotation (i.e. single or double) will be needed any time an insertion into or removal from an AVL tree that leaves the tree (temporarily) with a node whose balance factor is either -2 or 2.
- In other words, a rotation is needed when height balance is lost at a specific node in the tree. Let’s call this node N.

- If N has a balance factor of -2, this means N is left-heavy.
- If N has a balance factor of 2, this means N is right-heavy.
- Regardless of the direction of N’s heaviness, let’s refer to the heavier of N’s children as C.

- The node C itself will have a balance factor of -1, 0, or 1.
In class activity: How to rotate?

• Get into small groups, on the worksheet, for each unbalanced tree,
 • Determine whether a single rotation / a double rotation is needed
 • draw the height-balanced BSTs after rotating

• Can you generalize the situations when a single rotation is needed?

• Can you generalize the situations when a double rotation is needed?
In class activity: How to rotate?

Diagram:

- B: -2
- E: -1
- N

Notes:
- Right
- C: 3
In class activity: How to rotate?

D: Left
C: 32

B: 2
N

B: 1

64

32

96

64
In class activity: How to rotate?

1. Rotate left: 32
2. Rotate right: 64
In class activity: How to rotate?
Single vs. Double Rotation

• If \(N \) and \(C \) are heavy in the same direction, then a single rotation is needed around \(N \) in the opposite direction as \(N \)’s heaviness.

Single right rotation needed

Single left rotation needed
Single vs. Double Rotation

• If **N** and **C** are heavy in opposite directions, then a double rotation is needed
 - If **N** is left-heavy and **C** is right-heavy, then we first rotate left around **C** then right around **N**.
 - If **N** is right-heavy and **C** is left-heavy, then we first rotate right around **C** then left around **N**.
Single vs. Double Rotation

<table>
<thead>
<tr>
<th>balanceFactor(C)</th>
<th>balanceFactor(N)</th>
<th>Left-left imbalance</th>
<th>Right-left imbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2 (left-heavy)</td>
<td>Single rotation: right around N</td>
<td>Double rotation: 1. right around C 2. left around N</td>
</tr>
<tr>
<td>-1 (left-heavy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (right-heavy)</td>
<td></td>
<td>Left-right imbalance</td>
<td>Right-right imbalance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single rotation: left around N</td>
<td>Double rotation: 1. left around C 2. right around N</td>
</tr>
</tbody>
</table>
Single Rotations

• Recall: a single rotation is needed if N and C are heavy in the same direction.

• Single rotation: always centered around the node N (where height balance is lost), and the rotation is in the opposite direction of the imbalance.

• Two situations:
 • **Left-left imbalance** – N is left-heavy and N’s left child C is also left-heavy
 • Cause: insert an element into C’s left subtree OR remove an element from N’s right subtree
 • To fix: apply a single **right** rotation around N.

 • **Right-right imbalance** – N is right-heavy and N’s right child C is also right-heavy
 • Cause: insert an element into C’s right subtree OR remove an element from N’s left subtree
 • To fix: apply a single **left** rotation around N.
• Visualize a single right rotation:

In a right rotation around N:
• N will become the right child of its current left child C.
• C’s current right child will become N’s left child.
• If N has a parent \(P_N \), then C will replace N as \(P_N \)’s child. Otherwise, if N was the root of the entire tree, C will replace N as the root.
Double Rotations

• Recall: a double rotation is needed if N and C are heavy in the opposite direction.

• A double rotation consists of two single rotations:
 • The first one is always centered around N’s child C (align imbalances on the same side)
 • The second is always centered around N itself (where height balance is lost)

• Two situations:
 • **Left-right imbalance** – N is left-heavy and N’s left child C is right-heavy
 • Cause: insert an element into C’s right subtree OR remove an element from N’s right subtree
 • To fix: apply a **left rotation around C** followed by a **right rotation around N**

 • **Right-left imbalance** – N is right-heavy and N’s right child C is left-heavy
 • Cause: insert an element into C’s left subtree OR remove an element from N’s left subtree
 • To fix: apply a **right rotation around C** followed by a **left rotation around N**
Double Rotations

• Example:
Double Rotations

• Visualize a left-right imbalance:

- First rotation: Center around C, opposite direction of C’s imbalance, i.e., a left rotation around C:
 - G moves up in the tree to replace C as N’s left child.
 - C moves down in the tree to become G’s left child.
 - \(L_G \) becomes C’s right child.
Double Rotations

- Visualize a left-right imbalance:

 - Second rotation: Center around N, opposite direction of N’s imbalance, i.e., a right rotation around N:
 - G moves up in the tree to become the new root of this subtree
 - N moves down in the tree to become G’s right child.
 - If N had a parent, P_N, G would replace N as the child of P_N. If N was the root of the entire tree, G would become the new root
Double Rotations

• Visualize a left-right imbalance:
AVL Tree operations

• Note: an AVL tree will only ever need to be rebalanced in response to an operation that changes the structure of the tree
 • i.e. after inserting a new element or removing an element

• Rebalancing an AVL tree is a bottom-up operation
 • begins at the location in the tree where its structure was changed, and proceeds upwards from that location towards the root
AVL Tree operations

• Need a mechanism to retrace a path *upwards* from a given node back to the root

• How: by adding a pointer to the AVL tree node structure that *points to the node’s parent*
 • Then, retracing the path upwards from a node to the tree’s root is as simple as following these parent pointers up the tree

• Add an additional field that allows us to track the height of the subtree rooted at each node.

```c
struct avl_node {
    int key;
    void* value;
    int height;
    struct avl_node* left;
    struct avl_node* right;
    struct avl_node* parent;
};
```

• When a node doesn’t have a parent, parent = NULL.
• Specifically, the *root node* of the tree will always have a NULL parent pointer
AVL Tree operations

• Pseudocode for a right rotation:

rotateRight(N):
 C ← N.left
 N.left ← C.right
 if N.left is not NULL:
 N.left.parent ← N
 C.right ← N
 \(\checkmark \) C.parent ← N.parent
 \(\checkmark \) N.parent ← C
 updateHeight(N)
 updateHeight(C)
 return C
AVL Tree operations

• Pseudocode for a left rotation:

```plaintext
• rotateLeft(N):
  C ← N.right
  N.right ← C.left
  if N.right is not NULL:
    N.right.parent ← N
  C.left ← N
  C.parent ← N.parent
  N.parent ← C
  updateHeight(N)
  updateHeight(C)
  return C

updateHeight(N):
  N.height ← MAX(height(N.left), height(N.right)) + 1
```
AVL Tree operations

• How these pieces work:
 • Rotating left or right around a given node: simply involves trading a few pointers.
 • After every rotation, re-compute the subtree heights for both the node that moved downwards during the rotation (i.e. N) and the node that moved upwards during the rotation (i.e. C).
AVL Tree operations

• pseudocode for the insert operation:

\[\text{avlInsert}(\text{tree}, \text{key}, \text{value}) : \]
- insert key, value into tree like normal BST insertion
- \(N \leftarrow \text{newly inserted node} \)
- \(P \leftarrow N.\text{parent} \)
- while \(P \) is not \(\text{NULL} \):
 - rebalance\((P) \)
 - \(P \leftarrow P.\text{parent} \)

• pseudocode for the remove operation:

\[\text{avlRemove}(\text{tree}, \text{key}) : \]
- remove key from tree like normal BST removal
- \(P \leftarrow \text{lowest modified node (e.g. parent of removed node)} \)
- while \(P \) is not \(\text{NULL} \):
 - rebalance\((P) \)
 - \(P \leftarrow P.\text{parent} \)

The key piece: rebalance() function, which performs rebalancing at each node:
AVL Tree operations

• Pseudocode for rebalance():

• rebalance(N):

 if balanceFactor(N) < -1:
 if balanceFactor(N.left) > 0:
 N.left ← rotateLeft(N.left)
 newSubtreeRoot ← rotateRight(N)
 if newSubtreeRoot.parent is not NULL
 if newSubtreeRoot.parent.left is N:
 newSubtreeRoot.parent.left ← newSubtreeRoot
 else:
 newSubtreeRoot.parent.right ← newSubtreeRoot
 else if balanceFactor(N) > 1:
 if balanceFactor(N.right) < 0:
 N.right ← rotateRight(N.right)
 newSubtreeRoot ← rotateLeft(N)
 if newSubtreeRoot.parent is not NULL
 if newSubtreeRoot.parent.left is N:
 newSubtreeRoot.parent.left ← newSubtreeRoot
 else:
 newSubtreeRoot.parent.right ← newSubtreeRoot
 else:
 updateHeight(N)
Runtime Complexity of AVL Tree operations

• Single rotation (rotateLeft() and rotateRight()):
 • A limited number of pointers is updated
 • The height of two nodes is updated
 • Thus, \(O(1)\)

• rebalance():
 • For each call, at most two rotations.
 • Thus, \(O(1)\)

• How many times will rebalance() be called?
 • once per node on a traversal upwards to the root of the tree
 • Thus, the maximum number of times rebalance() can be called is \(h\) (height of the tree)

• If a tree is height balanced, then \(h = \log(n)\). Thus, the AVL tree’s insert and remove operations each have overall complexity of \(O(h) = O(\log n)\)