
CS 261-020
Data Structures

Lecture 12

AVL Trees (cont.)

Priority Queues and Heaps

2/27/24, Tuesday

1

Odds and Ends

• Recitation 8 posted

• Assignment 4 posted!
• Note: THIS IS A ONE-WEEK ASSIGNEMNT!!!

• Assignment 3 Due Extension →Monday 2/26 midnight

2

Lecture Topics:

• AVL Trees (cont.)

• Priority Queues & Heaps

• Array-based Heaps

• Build a heap from an arbitrary array

• Heapsort

3

Single vs. Double Rotation

4

AVL Tree operations

5

• Need a mechanism to retrace a path upwards from a given node back to the root

• How: by adding a pointer to the AVL tree node structure that points to the node’s parent
• Then, retracing the path upwards from a node to the tree’s root is as simple as following these parent

pointers up the tree

• Add an additional field that allows us to track the height of the subtree rooted at each node.
struct avl_node {

int key;

void* value;

int height;

struct avl_node* left;

struct avl_node* right;

struct avl_node* parent;

};

• When a node doesn’t have a parent, parent = NULL.

• Specifically, the root node of the tree will always have a NULL parent pointer

AVL Tree operations

6

• Pseudocode for a right rotation:

• rotateRight(N):
C ← N.left

N.left ← C.right

if N.left is not NULL:

N.left.parent ← N

C.right ← N

C.parent ← N.parent

N.parent ← C

updateHeight(N)

updateHeight(C)

return C

AVL Tree operations

7

• Pseudocode for a left rotation:

• rotateLeft(N):
C ← N.right

N.right ← C.left

if N.right is not NULL:

N.right.parent ← N

C.left ← N

C.parent ← N.parent

N.parent ← C

updateHeight(N)

updateHeight(C)

return C
updateHeight(N):

 N.height ← MAX(height(N.left), height(N.right)) + 1

AVL Tree operations

8

• How these pieces work:
• Rotating left or right around a given node: simply involves trading a few pointers.

• After every rotation, re-compute the subtree heights for both the node that moved
downwards during the rotation (i.e. N) and the node that moved upwards during
the rotation (i.e. C).

AVL Tree operations

9

• pseudocode for the insert operation:

avlInsert(tree, key, value):
insert key, value into tree like normal BST insertion
N ← newly inserted node
P ← N.parent
while P is not NULL:

rebalance(P)
P ← P.parent

• pseudocode for the remove operation:

avlRemove(tree, key):
remove key from tree like normal BST removal
P ← lowest modified node (e.g. parent of removed node)
while P is not NULL:

rebalance(P)
P ← P.parent

The key piece: rebalance() function, which performs rebalancing at each node:

AVL Tree operations

10

• Pseudocode for rebalance():

• rebalance(N):

 if balanceFactor(N) < -1:

 if balanceFactor(N.left) > 0:

 N.left ← rotateLeft(N.left)

 newSubtreeRoot ← rotateRight(N)

 if newSubtreeRoot.parent is not NULL

 if newSubtreeRoot.parent.left is N:

 newSubtreeRoot.parent.left ← newSubtreeRoot

 else:

 newSubtreeRoot.parent.right ← newSubtreeRoot

 else if balanceFactor(N) > 1:

 if balanceFactor(N.right) < 0:

 N.right ← rotateRight(N.right)

 newSubtreeRoot ← rotateLeft(N)

 if newSubtreeRoot.parent is not NULL

 if newSubtreeRoot.parent.left is N:

 newSubtreeRoot.parent.left ← newSubtreeRoot

 else:

 newSubtreeRoot.parent.right ← newSubtreeRoot

else:

 updateHeight(N)

Runtime Complexity of AVL Tree operations

11

• Single rotation (rotateLeft() and rotateRight()):
• A limited number of pointers is updated
• The height of two nodes is updated
• Thus, O(1)

• rebalance() :
• For each call, at most two rotations.
• Thus, O(1)

• How many times will rebalance() be called?
• once per node on a traversal upwards to the root of the tree
• Thus, the maximum number of times rebalance() can be called is h (height of the tree)

• If a tree is height balanced, then h = log(n). Thus, the AVL tree’s insert and remove
operations each have overall complexity of O(h) = O(log n)

Lecture Topics:

• AVL Trees (cont.)

• Priority Queues & Heaps

• Array-based Heaps

• Build a heap from an arbitrary array

• Heapsort

12

Priority Queues

13

• Priority Queue: an ADT that associates a priority value with each element.

• The element with the highest priority is the first one dequeued.
• highest priority – element with the lowest priority value

• Interface:
• insert() – insert an element with a specified priority value

• first() – return the element with the lowest priority value (the “first” element
in the priority queue)

• remove_first() – remove (and return) the element with the lowest priority
value

Priority Queues Visualization

14

• The user’s view of a priority queue:

• A priority queue is typically implemented using a data structure called a heap

Heaps

15

• Caveat: The heap data structure ≠ the dynamic memory space “heap”

• A heap data structure: a complete binary tree in which every node’s value
is less than or equal to the values of its children
• This is called a minimizing binary heap, or just “min heap”.

• max heap: each node’s value is greater than or equal to the values of its children

• Recall: a complete binary tree is one that is filled, except for the bottom
level, which is filled from left to right
• The longest path from root to leaf in such a tree is O(log n).

Min Heap Example

16

• With only priority values displayed:

Add a node to a Heap

17

• A min (or max) heap is maintained through the addition and removal of
nodes via percolations
• Percolation – move nodes up and down the tree according to their priority

values.

• When adding a value to a heap,
• place it into the next open spot

• percolate it up the heap until its priority value is less than both of its children

Add a node to a Heap

18

• Example: adding the value 7 to the min heap:

1. place it in the next open spot

Add a node to a Heap

19

• Example: adding the value 7 to the min heap:

2. percolate the new element up the tree

while new priority value < parent’s priority value:

 swap new node with parent

Add a node to a Heap

20

• Example: adding the value 7 to the min heap:

2.1. compare the new node (7) with its parent (10) and see that they
needed to be swapped to maintain the min heap property:

while new priority value < parent’s priority value:

 swap new node with parent

Add a node to a Heap

21

• Example: adding the value 7 to the min heap:

2.2. compare the new node (7) with its new parent (8) and see that they too
needed to be swapped:

while new priority value < parent’s priority value:

 swap new node with parent

Add a node to a Heap

22

• Runtime Complexity of percolation: O(log n)

while new priority value < parent’s priority value:

 swap new node with parent

Remove a node from a Heap

23

• In a min heap, the root node’s priority value is always the lowest
• the first() and remove_first()always access and remove the root node

• Question: If we always remove the root node, how do we replace it?
• Remember, we need to maintain the completeness of the binary tree.

• Answer: replace it with the element last added to the heap and then fix
the heap by percolating that node down

Remove a node from a Heap

24

• Example: remove the root node (2) from that heap:

Remove a node from a Heap

25

• Example: remove the root node (2) from that heap:

1. replace it with the last added node (32)

Remove a node from a Heap

26

• Example: remove the root node (2) from that heap:

2. percolate the replacement node down the tree

while priority > smallest child priority:

 swap with smallest child

Lecture Topics:

• Priority Queues & Heaps

• Array-based Heaps

• Build a heap from an arbitrary array

• Heapsort

27

Implement a Heap

28

• Many ways to implement a heap…

• Recall: a heap data structure contains a complete binary tree

• Then…

Implement a Heap

29

• Implement the complete binary tree representation of a heap using an array:
• root node of the heap is stored at index 0

• The left and right children of a node at index i are stored respectively at indices 2 * i + 1 and 2 * i + 2

• The parent of a node at index i is at (i - 1) / 2 (using the floor that results from integer division).

• Example:

Implement a Heap

30

• Q: Can you implement a binary tree that was not complete using an array?

• A: No!

• Example:

Implement a Heap

31

• Keeping track of the last added element and the first open spot in the
array representation of the heap is simple
• simply the last element in the array and the following empty spot

• Example:

Inserting into an array-based Heap

32

• Inserting an element into the array representation of the heap follows this
procedure:

1. Put new element at the end of the array.

2. Compute the inserted element’s parent index ((i - 1) / 2).

3. Compare the value of the inserted element with the value of its parent.

4. If the value of the parent is greater than the value of the inserted element, swap
the elements in the array and repeat from step 2.
• Do not repeat if the element has reached the beginning of the array.

Inserting into an array-based Heap

33

• Example: added 7 to the following heap

Inserting into an array-based Heap

34

• Example: added 7 to the following heap

1. insert the new element into the end of the array

Inserting into an array-based Heap

35

• Example: added 7 to the following heap

2. compute the index of 7’s parent node ((11 - 1) / 2 → 5)

Inserting into an array-based Heap

36

• Example: added 7 to the following heap

3. compare 7 with the value we found there (at index 5 → 10)

Inserting into an array-based Heap

37

• Example: added 7 to the following heap

4. Since 7 is less than 10, swap them

Inserting into an array-based Heap

38

• Example: added 7 to the following heap

5. Repeat, comparing 7 to its new parent 8 at index (5 - 1) / 2 → 2, and swap
again

Inserting into an array-based Heap

39

• Example: added 7 to the following heap

6. Repeat, compare to 7’s new parent node 2 at index (2 - 1) / 2 → 0, and
we’d stop, since 2 is less than 7

Removing from an array-based Heap

40

• Recall: in min heap, always remove the node with the lowest priority (i.e., root)

• Remove an element from the array representation of the heap follows this procedure:
1. Remember the value of the first element in the array (to be returned later).

2. Replace the value of the first element in the array with the value of the last element and remove
the last element.

3. If the array is not empty (i.e. it started with more than one element), compute the indices of the
children of the replacement element (2 * i + 1 and 2 * i + 2).
• If both of these elements fall beyond the bounds of the array, stop here.

4. Compare the value of the replacement element with the minimum value of its two children (or
possibly one child).

5. If the replacement element’s value is greater than its minimum child’s value, swap those two
elements in the array and repeat from step 3

Removing from an array-based Heap

41

• Example: removing the root (2) from the following heap

Removing from an array-based Heap

42

• Example: removing the root (2) from the following heap

1. replacing the root (the first element in the array) with the last element
and then removing the last element

Removing from an array-based Heap

43

• Example: removing the root (2) from the following heap

2. percolate 32 down the array, comparing it to its minimum-value child and
swapping values in the array until 32 reached its correct place

Lecture Topics:

• Priority Queues & Heaps

• Array-based Heaps

• Build a heap from an arbitrary array

• Heapsort

44

Building a heap from an arbitrary array

45

• Example: Convert the following arbitrary array to a heap:

• First, consider this arbitrary array as a heap:

Building a heap from an arbitrary array

46

• Percolate down the first non-leaf element, then the subtree rooted at that element’s
original position will be a proper heap
• first non-leaf element (from the back of the array) is at n / 2 - 1

Building a heap from an arbitrary array

47

• Percolate down the first non-leaf element, then the subtree rooted at that element’s
original position will be a proper heap
• first non-leaf element (from the back of the array) is at n / 2 - 1

Building a heap from an arbitrary array

48

• Percolate down the first non-leaf element, then the subtree rooted at that element’s
original position will be a proper heap
• first non-leaf element (from the back of the array) is at n / 2 - 1

Building a heap from an arbitrary array

49

• Once we percolate down the root element, the entire array will represent
a proper heap

Building a heap from an arbitrary array

50

• Time Complexity:
• perform n / 2 downward percolation operations.

• Each of these operations is O(log n).

• This means the total complexity is O(n log n).

• Space Complexity:
• No additional space needed and no recursive calls: O(1)

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Single vs. Double Rotation
	Slide 5: AVL Tree operations
	Slide 6: AVL Tree operations
	Slide 7: AVL Tree operations
	Slide 8: AVL Tree operations
	Slide 9: AVL Tree operations
	Slide 10: AVL Tree operations
	Slide 11: Runtime Complexity of AVL Tree operations
	Slide 12: Lecture Topics:
	Slide 13: Priority Queues
	Slide 14: Priority Queues Visualization
	Slide 15: Heaps
	Slide 16: Min Heap Example
	Slide 17: Add a node to a Heap
	Slide 18: Add a node to a Heap
	Slide 19: Add a node to a Heap
	Slide 20: Add a node to a Heap
	Slide 21: Add a node to a Heap
	Slide 22: Add a node to a Heap
	Slide 23: Remove a node from a Heap
	Slide 24: Remove a node from a Heap
	Slide 25: Remove a node from a Heap
	Slide 26: Remove a node from a Heap
	Slide 27: Lecture Topics:
	Slide 28: Implement a Heap
	Slide 29: Implement a Heap
	Slide 30: Implement a Heap
	Slide 31: Implement a Heap
	Slide 32: Inserting into an array-based Heap
	Slide 33: Inserting into an array-based Heap
	Slide 34: Inserting into an array-based Heap
	Slide 35: Inserting into an array-based Heap
	Slide 36: Inserting into an array-based Heap
	Slide 37: Inserting into an array-based Heap
	Slide 38: Inserting into an array-based Heap
	Slide 39: Inserting into an array-based Heap
	Slide 40: Removing from an array-based Heap
	Slide 41: Removing from an array-based Heap
	Slide 42: Removing from an array-based Heap
	Slide 43: Removing from an array-based Heap
	Slide 44: Lecture Topics:
	Slide 45: Building a heap from an arbitrary array
	Slide 46: Building a heap from an arbitrary array
	Slide 47: Building a heap from an arbitrary array
	Slide 48: Building a heap from an arbitrary array
	Slide 49: Building a heap from an arbitrary array
	Slide 50: Building a heap from an arbitrary array

