CS 261-020 Data Structures

Lecture 13 Heapsort Maps and Hash Tables 2/29/24, Thursday

1

Odds and Ends

- Assignment 4 due Sunday midnight via TEACH
- Quiz 4 unlock after today's lecture, due Sunday midnight via Canvas

Removing from an array-based Heap

- Recall: in min heap, always remove the node with the lowest priority (i.e., root)
- Remove an element from the array representation of the heap follows this procedure:
 - 1. Remember the value of the first element in the array (to be returned later).
 - 2. Replace the value of the first element in the array with the value of the last element and remove the last element.
 - 3. If the array is not empty (i.e. it started with more than one element), compute the indices of the children of the replacement element (2 * <u>i</u> + 1 and 2 * i + 2).
 - If both of these elements fall beyond the bounds of the array, stop here. Pri are
 - 4. Compare the value of the replacement element with the minimum value of its two children (or possibly one child).
 - possibly one child).
 5. If the replacement element's value is greater than its minimum child's value, swap those two elements in the array and repeat from step 3

Min

Building a heap from an arbitrary array

- Percolate down the first non-leaf element, then the subtree rooted at that element's original position will be a proper heap
- lpha first non-leaf element (from the back of the array) is at n / 2 1

Building a heap from an arbitrary array

- Time Complexity:
 - perform n / 2 downward percolation operations.
 - Each of these operations is O(log n).
 - This means the total complexity is O(n log n).
- Space Complexity:
 - No additional space needed and no recursive calls: O(1)

Lecture Topics:

- Heapsort
- Hash Tables
- Hash Functions
- Hash Collisions

Heap Sort

- Given the heap and its operations, we can implement an efficient (O(n log n)), in-place sorting algorithm called heapsort.
- First, build a heap out of the array
- Then, sort:
 - Keep a running counter k that is initialized to one less than the size of the array (i.e. the last element).
 - Swap the first element in the array (the min) with the last element (the kth element).
 - The array itself remains the same size, and we decrement k.
 - Percolate the replacement value down to its correct place in the array, stop at the kth element.
 - Thus, the heap is effectively shrinking by 1 at each iteration
- Repeat this procedure until k reaches the beginning of the array

Heap Sort

- As this sorting procedure runs, it maintains two properties:
 - The elements of the array beyond k are sorted, with the minimum element at the end of the array.
 - The array through element k always forms a heap, with the minimum remaining value at the beginning of the array

Lecture Topics:

- Heapsort
- Hash Tables
- Hash Functions
- Hash Collisions

Maps

- Map data type: when insertion and lookup (even removal) are the only operations we need
 - A map is also known as a dictionary or an associative array
- With a map, each data element is actually composed of two parts:
 - The *key*, which is the value by which we look items up.
 - The *value*, which is any and all other data associated with the element

Maps

 For example, in a web app, the user data might be represented in a map, key = username/email

value = all other data about each user

In-class activity:

• Given the following words (data pool), what data structure can we use to implement a map that has the best lookup functionality?

• "yummy"
 "delicious"
 "incredible"
 "fantastic"
 "exquisite"
 "nonpareil"

Map Example

Data structures that allow us to implement a map structure:

• Array, storing key/value structs.

- Sinany search

- This would give us O(n) insertions and lookups (or O(log n) lookups, if/we ordered the array by key)
- AVL tree, also storing key/value structs.
 - This would give us O(log n) insertions and lookups
- Can we do it better?
- If we know the index, then insertions and lookups will be O(1)
 - How? By using a hash table

Consider this...

- Suppose we want to maintain a set of students (size n), where each student has a unique id from (0 to n-1) and a student name.
- Q: How can we use the student id to find a student in an array?
- Simple! Array of size n, student i will be at index i
- lookup: O(1), insert: O(1), remove: O(1), memory: O(n)

Consider this...

- Suppose we want to maintain a set of students (size n), where each student has a 9-digit id and a student name.
- Q: How can we use the student id to find a student in an array?
- Option 1: An array of size 999 999 999! Student id == index
 - Then, lookup: O(1), insert: O(1), remove: O(1)
 - Problem: memory usage! Lots of unused space
- Alternatively, we can use the key to compute an index into a moderate size array.
 - Want: lookup: O(1), insert: O(1), remove: O(1), memory: O(n)

- A hash table is like an array, with a few important differences:
 - Elements can be indexed by values other than integers.
 - More than one element may share an index. (More later)
- The key to implementing a hash table is a hash function, which is a function that takes values of some type (e.g. string, struct, double, etc.) and maps them to an integer index value

Key
$$\rightarrow$$
 Hash function \rightarrow integer

 We can then use this value both to store and retrieve data out of an actual array:

• Often the hash function computes an index in two steps:

hash = hash_function(key)
index = hash % array_size

Hash Table Example:

• Use the following hash function to store the words into a hash table.

```
int string_hash(char* str) {
    return (int)(str[0] - 'a') % 6;
}
```

"yummy"
"delicious"
"incredible"
"fantastic"
"exquisite"
"nonpareil"

$$\begin{array}{l} `y' - `a' = 24 \% \ 6 = 0 \\ `d' - `a' = 3 \% \ 6 = 3 \\ `i' - `a' = 8 \% \ 6 = 2 \\ `f' - `a' = 5 \% \ 6 = 5 \\ `e' - `a' = 4 \% \ 6 = 4 \\ `n' - `a' = 13 \% \ 6 = 1 \end{array}$$

yummy nonpareil incredible delicious exquisite fantastic	/ummy
--	-------

- When choosing or designing a hash function, there are a few properties that are desirable:
 - **Determinism** a given input should always map to the same hash value.
 - Uniformity the inputs should be mapped as evenly as possible over the output range.
 - A non-uniform function can result in many collisions, where multiple elements are hashed to the same array index. (More later).
 - Speed the function should have low computational burden

• For example, if we were hashing strings, a simple hash function might sum the ASCII values of the characters, e.g.:

"eat" ⇒ 'e' + 'a' + 't' = 101 + 97 + 116 = 314

• An operation like this is known as a folding operation.

• Problems

"eat" ⇒ 'e' + 'a' + 't' = 101 + 97 + 116 = 314 "ate" ⇒ 'a' + 't' + 'e' = 97 + 116 + 101 = 314 "tea" ⇒ 't' + 'e' + 'a' = 116 + 101 + 97 = 314

- To fix this, use a shifting operation, which modifies the individual components of a folding operation based on their position.
- E.g. multiply by 2⁰, 2¹, 2², 2³, ...

"eat" \Rightarrow 'e' + 'a' + 't' = 1* 101 + 2* 97 + 4* 116 = 759 "ate" \Rightarrow 'a' + 't' + 'e' = 1* 97 + 2* 116 + 4* 101 = 733 "tea" \Rightarrow 't' + 'e' + 'a' = 1* 116 + 2* 101 + 3* 97 = 609

• An example of a well-known and widely-used hash function, the DJB hash function (for strings):

```
unsigned long hash(unsigned char *str) {
  unsigned long hash = 5381;
  int c;
  while (c = *str++) {
    hash = ((hash << 5) + hash) + c; // hash * 33 + c
  }
  return hash;
}</pre>
```

- This function is simple and fast (though could be faster, e.g. by processing multiple bytes at a time).
- It produces a good distribution

Perfect and Minimally Perfect Hash Functions

• Collision: some keys map to the same index:

- x != y, but hash(x) == hash(y)
- A perfect hash function is one that results in no collisions.

• A minimally perfect hash function is one that results in no collisions for a table size that exactly equals the number of elements.

 \mathbf{n}

Perfect and Minimally Perfect Hash Functions

- For example, consider this collection of strings:
- "yummy"
 "delicious"
 "incredible"
 "fantastic"
 "exquisite"
 "nonpareil"
- The following function is minimally perfect

```
• int string_hash(char* str) {
        return (int)(str[0] - 'a') % 6;
}
```

- Specifically, we have all the values 0 through 5 covered
- string hash ("yummy") $\rightarrow 0$ // 'y' 'a' = 24 string hash ("delicious") $\rightarrow 3$ // 'd' - 'a' = 3 string hash ("incredible") $\rightarrow 2$ // 'i' - 'a' = 8 string hash ("fantastic") $\rightarrow 5$ // 'f' - 'a' = 5 string hash ("exquisite") $\rightarrow 4$ // 'e' - 'a' = 4 string hash ("nonpareil") $\rightarrow 1$ // 'n' - 'a' = 13

Perfect and Minimally Perfect Hash Functions

- In practice, we don't usually have such a nicely arranged situation, so it's rare that our hash function will be minimally perfect.
 - For example, even with perfectly uniform random distribution of elements and a hash table with a capacity of 1 million elements, there is a 95% probability of a collision with only 2450 elements
- This means that, most likely, we'll need to be able to deal with collisions

Collision Example:

• Hash function to store the words into a hash table.

```
• int string_hash(char* str) {
    return (int)(str[0] - 'a') % 6;
}
```

```
"yummy"
"delicious"
"incredible"
"fantastic"
"exquisite"
"date"
```

clate.

ummy	nonpareil	incredible	delicious	fantastic

Collision Resolution

Two mechanisms for resolving hash collisions

- Chaining
- Open addressing

1. Collision Resolution with Chaining

- The chaining method involves storing a collection of elements at each index in the hash table array.
 - Each collection is called a bucket or a chain.
- When a collision occurs, the new element is added to the collection at its corresponding hash index.
- Linked lists are a popular choice for maintaining the buckets themselves.
 - Other data structures could be used, e.g. a dynamic array or a balanced binary tree

1. Collision Resolution with Chaining

• Here's what a hash table with linked list-based chains might look like:

1. Collision Resolution with Chaining

- In a chained hash table,
- To loopup the value for a particular key:
 - Compute the element's bucket using the hash function
 - Search the data structure at that bucket for the element (using the key)
 - E.g. iterate through the items in the linked list.

- To add/remove an element:
 - Compute the element's bucket using the hash function
 - add or remove the element to/from the appropriate bucket's data structure
 - E.g. iterate through the items in the linked list.

- The open addressing method: involves probing for an empty spot
- When using open addressing, all hashed elements are stored directly in the hash table array
- To insert an element:
 - Use the hash function to compute an initial index i for the element.
 - If the hash table array at index i is empty, insert the element there and stop.
 - Otherwise, increment i to the next index in the probing sequence (e.g. i + 1) and repeat

- Probing: the process of searching for an empty position.
- There are many different probing schemes:
 - Linear probing: i = i + 1
 - Quadratic probing: i = i + j² (j = 1, 2, 3, ...)
 - Double hashing: i = i + j * h₂(key) (j = 1, 2, 3, ...)
 - Here, h₂ is a second, independent hash function.

• For example, using linear probing, the key "beyonce" would be inserted at index 7, even though the hash function evaluates to 4 for that key:

- To search for an element:
 - Use the hash function to compute an initial index i for the element
 - probe until we find either the element or an empty spot
 - If found an empty spot, then the element doesn't exist

- What happens if we reach the end of the array while probing?
 - Simply wrap around to the beginning.

- What happens when we remove an element?
 - Search for the element, then remove it
- What about searching after removing?
 - This could disrupt probing for elements after it.
- For example, what if we removed "jon" and then searched for "beyonce"?

- To get around this problem, we use a special value known as the tombstone
- Now, when an element is removed, we insert the tombstone value.
 - This value can be replaced when adding a new entry, but it doesn't halt search for an existing element.
- With a tombstone value ___TS___ inserted for the removed "jon", the search above for "beyonce" could proceed as normal:

42

