
CS 261-020
Data Structures

Lecture 13

Heapsort

Maps and Hash Tables

2/29/24, Thursday

1

Odds and Ends

• Assignment 4 due Sunday midnight via TEACH

• Quiz 4 unlock after today’s lecture, due Sunday midnight via Canvas

2

Removing from an array-based Heap

3

• Recall: in min heap, always remove the node with the lowest priority (i.e., root)

• Remove an element from the array representation of the heap follows this procedure:
1. Remember the value of the first element in the array (to be returned later).

2. Replace the value of the first element in the array with the value of the last element and remove
the last element.

3. If the array is not empty (i.e. it started with more than one element), compute the indices of the
children of the replacement element (2 * i + 1 and 2 * i + 2).
• If both of these elements fall beyond the bounds of the array, stop here.

4. Compare the value of the replacement element with the minimum value of its two children (or
possibly one child).

5. If the replacement element’s value is greater than its minimum child’s value, swap those two
elements in the array and repeat from step 3

Building a heap from an arbitrary array

4

• Percolate down the first non-leaf element, then the subtree rooted at that element’s
original position will be a proper heap

• first non-leaf element (from the back of the array) is at n / 2 - 1

Building a heap from an arbitrary array

5

• Time Complexity:
• perform n / 2 downward percolation operations.

• Each of these operations is O(log n).

• This means the total complexity is O(n log n).

• Space Complexity:
• No additional space needed and no recursive calls: O(1)

Lecture Topics:

• Heapsort

• Hash Tables

• Hash Functions

• Hash Collisions

6

Heap Sort

7

• Given the heap and its operations, we can implement an efficient (O(n log
n)), in-place sorting algorithm called heapsort.

• First, build a heap out of the array

• Then, sort:
• Keep a running counter k that is initialized to one less than the size of the array (i.e.

the last element).
• Swap the first element in the array (the min) with the last element (the kth

element).
• The array itself remains the same size, and we decrement k.

• Percolate the replacement value down to its correct place in the array, stop at the
kth element.

• Thus, the heap is effectively shrinking by 1 at each iteration

• Repeat this procedure until k reaches the beginning of the array

Heap Sort

8

• As this sorting procedure runs, it maintains two properties:
• The elements of the array beyond k are sorted, with the minimum element at the

end of the array.

• The array through element k always forms a heap, with the minimum remaining
value at the beginning of the array

Heap Sort Example

9

• Apply Heapsort to the following heap array (descending order):

Heap Sort Example

10

• Apply Heapsort to the following heap array (descending order):

Heap Sort Example

11

• Apply Heapsort to the following heap array (descending order):

Heap Sort Example

12

• Apply Heapsort to the following heap array (descending order):

Heap Sort Example

13

• Apply Heapsort to the following heap array (descending order):

Heap Sort Example

14

Lecture Topics:

• Heapsort

• Hash Tables

• Hash Functions

• Hash Collisions

15

Maps

16

• Map data type: when insertion and lookup (even removal) are the only
operations we need

• A map is also known as a dictionary or an associative array

• With a map, each data element is actually composed of two parts:
• The key, which is the value by which we look items up.

• The value, which is any and all other data associated with the element

Maps

17

• For example, in a web app, the user data might be represented in a map,
key = username/email
value = all other data about each user

In-class activity:

• Given the following words (data pool), what data structure can we
use to implement a map that has the best lookup functionality?

• "yummy"
"delicious"
"incredible"
"fantastic"
"exquisite"
"nonpareil"

18

Map Example

19

Data structures that allow us to implement a map structure:

• Array, storing key/value structs.
• This would give us O(n) insertions and lookups (or O(log n) lookups, if we ordered

the array by key)

• AVL tree, also storing key/value structs.
• This would give us O(log n) insertions and lookups

• Can we do it better?

• If we know the index, then insertions and lookups will be O(1)
• How? By using a hash table

Consider this…

20

• Suppose we want to maintain a set of students (size n), where each
student has a unique id from (0 to n-1) and a student name.

• Q: How can we use the student id to find a student in an array?

• Simple! Array of size n, student i will be at index i

• lookup: O(1), insert: O(1), remove: O(1), memory: O(n)

Consider this…

21

• Suppose we want to maintain a set of students (size n), where each
student has a 9-digit id and a student name.

• Q: How can we use the student id to find a student in an array?

• Option 1: An array of size 999 999 999! Student id == index
• Then, lookup: O(1), insert: O(1), remove: O(1)

• Problem: memory usage! Lots of unused space

• Alternatively, we can use the key to compute an index into a moderate
size array.

• Want: lookup: O(1), insert: O(1), remove: O(1), memory: O(n)

Hash Tables

22

• A hash table is like an array, with a few important differences:
• Elements can be indexed by values other than integers.

• More than one element may share an index. (More later)

• The key to implementing a hash table is a hash function, which is a
function that takes values of some type (e.g. string, struct, double, etc.)
and maps them to an integer index value

Key → Hash function → integer

Hash Tables

23

• We can then use this value both to store and retrieve data out of an actual
array:

• Often the hash function computes an index in two steps:
hash = hash_function(key)

index = hash % array_size

Hash Table Example:

• Use the following hash function to store the words into a hash table.
int string_hash(char* str) {

return (int)(str[0] - 'a') % 6;

}

• "yummy“ ‘y’ – ‘a’ = 24 % 6 = 0
"delicious“ ‘d’ – ‘a’ = 3 % 6 = 3
"incredible“ ‘i’ – ‘a’ = 8 % 6 = 2
"fantastic“ ‘f’ – ‘a’ = 5 % 6 = 5
"exquisite“ ‘e’ – ‘a’ = 4 % 6 = 4
"nonpareil“ ‘n’ – ‘a’ = 13 % 6 = 1

24

yummy nonpareil incredible delicious exquisite fantastic

Hash Tables

25

• When choosing or designing a hash function, there are a few properties
that are desirable:

• Determinism – a given input should always map to the same hash value.

• Uniformity – the inputs should be mapped as evenly as possible over the output
range.

• A non-uniform function can result in many collisions, where multiple elements are hashed to
the same array index. (More later).

• Speed – the function should have low computational burden

Hash Tables

26

• For example, if we were hashing strings, a simple hash function might sum
the ASCII values of the characters, e.g.:
"eat" ⇨ 'e' + 'a' + 't' = 101 + 97 + 116 = 314

• An operation like this is known as a folding operation.

• Problems
"eat" ⇨ 'e' + 'a' + 't' = 101 + 97 + 116 = 314

"ate" ⇨ 'a' + 't' + 'e' = 97 + 116 + 101 = 314

"tea" ⇨ 't' + 'e' + 'a' = 116 + 101 + 97 = 314

Hash Tables

27

• To fix this, use a shifting operation, which modifies the individual
components of a folding operation based on their position.

• E.g. multiply by 20, 21, 22, 23, …

"eat" ⇨ 'e' + 'a' + 't’ =

1* 101 + 2* 97 + 4* 116 = 759

"ate" ⇨ 'a' + 't' + 'e’ =

1* 97 + 2* 116 + 4* 101 = 733

"tea" ⇨ 't' + 'e' + 'a’ =

1* 116 + 2* 101 + 3* 97 = 609

Hash Tables

28

• An example of a well-known and widely-used hash function, the DJB hash
function (for strings):

unsigned long hash(unsigned char *str) {

unsigned long hash = 5381;

int c;

while (c = *str++) {

hash = ((hash << 5) + hash) + c; // hash * 33 + c

}

return hash;

}

• This function is simple and fast (though could be faster, e.g. by processing
multiple bytes at a time).

• It produces a good distribution

Perfect and Minimally Perfect Hash Functions

29

• Collision: some keys map to the same index:
• x != y, but hash(x) == hash(y)

• A perfect hash function is one that results in no collisions.

• A minimally perfect hash function is one that results in no collisions for a
table size that exactly equals the number of elements.

Perfect and Minimally Perfect Hash Functions

30

• For example, consider this collection of strings:
• "yummy"

"delicious"
"incredible"
"fantastic"
"exquisite"
"nonpareil"

• The following function is minimally perfect
• int string_hash(char* str) {

return (int)(str[0] - 'a') % 6;
}

• Specifically, we have all the values 0 through 5 covered
• string_hash("yummy") → 0 // 'y' - 'a' = 24
string_hash("delicious") → 3 // 'd' - 'a' = 3
string_hash("incredible") → 2 // 'i' - 'a' = 8
string_hash("fantastic") → 5 // 'f' - 'a' = 5
string_hash("exquisite") → 4 // 'e' - 'a' = 4
string_hash("nonpareil") → 1 // 'n' - 'a' = 13

Perfect and Minimally Perfect Hash Functions

31

• In practice, we don’t usually have such a nicely arranged situation, so it’s
rare that our hash function will be minimally perfect.

• For example, even with perfectly uniform random distribution of elements and a
hash table with a capacity of 1 million elements, there is a 95% probability of a
collision with only 2450 elements

• This means that, most likely, we’ll need to be able to deal with collisions

Collision Example:

• Hash function to store the words into a hash table.
• int string_hash(char* str) {

return (int)(str[0] - 'a') % 6;

}

• "yummy"
"delicious"
"incredible"
"fantastic"
"exquisite"
“date"

32

yummy nonpareil incredible delicious fantastic

Collision Resolution

33

Two mechanisms for resolving hash collisions

• Chaining

• Open addressing

1. Collision Resolution with Chaining

34

• The chaining method involves storing a collection of elements at each
index in the hash table array.

• Each collection is called a bucket or a chain.

• When a collision occurs, the new element is added to the collection at its
corresponding hash index.

• Linked lists are a popular choice for maintaining the buckets themselves.
• Other data structures could be used, e.g. a dynamic array or a balanced binary tree

1. Collision Resolution with Chaining

35

• Here’s what a hash table with linked list-based chains might look like:

1. Collision Resolution with Chaining

36

• In a chained hash table,

• To loopup the value for a particular key:
• Compute the element’s bucket using the hash function

• Search the data structure at that bucket for the element (using the key)
• E.g. iterate through the items in the linked list.

• To add/remove an element:
• Compute the element’s bucket using the hash function

• add or remove the element to/from the appropriate bucket’s data structure
• E.g. iterate through the items in the linked list.

2. Collision Resolution with Open Addressing

37

• The open addressing method: involves probing for an empty spot

• When using open addressing, all hashed elements are stored directly in
the hash table array

• To insert an element:
• Use the hash function to compute an initial index i for the element.

• If the hash table array at index i is empty, insert the element there and stop.

• Otherwise, increment i to the next index in the probing sequence (e.g. i + 1) and
repeat

2. Collision Resolution with Open Addressing

38

• Probing: the process of searching for an empty position.

• There are many different probing schemes:
• Linear probing: i = i + 1

• Quadratic probing: i = i + j2 (j = 1, 2, 3, …)

• Double hashing: i = i + j * h2(key) (j = 1, 2, 3, …)
• Here, h2 is a second, independent hash function.

2. Collision Resolution with Open Addressing

39

• For example, using linear probing, the key "beyonce" would be inserted at
index 7, even though the hash function evaluates to 4 for that key:

2. Collision Resolution with Open Addressing

40

• To search for an element:
• Use the hash function to compute an initial index i for the element

• probe until we find either the element or an empty spot
• If found an empty spot, then the element doesn’t exist

• What happens if we reach the end of the array while probing?
• Simply wrap around to the beginning.

2. Collision Resolution with Open Addressing

41

• What happens when we remove an element?
• Search for the element, then remove it

• What about searching after removing?
• This could disrupt probing for elements after it.

• For example, what if we removed "jon" and then searched for "beyonce"?

2. Collision Resolution with Open Addressing

42

• To get around this problem, we use a special value known as the tombstone

• Now, when an element is removed, we insert the tombstone value.
• This value can be replaced when adding a new entry, but it doesn’t halt search for an existing

element.

• With a tombstone value __TS__ inserted for the removed "jon", the search above for
"beyonce" could proceed as normal:

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Removing from an array-based Heap
	Slide 4: Building a heap from an arbitrary array
	Slide 5: Building a heap from an arbitrary array
	Slide 6: Lecture Topics:
	Slide 7: Heap Sort
	Slide 8: Heap Sort
	Slide 9: Heap Sort Example
	Slide 10: Heap Sort Example
	Slide 11: Heap Sort Example
	Slide 12: Heap Sort Example
	Slide 13: Heap Sort Example
	Slide 14: Heap Sort Example
	Slide 15: Lecture Topics:
	Slide 16: Maps
	Slide 17: Maps
	Slide 18: In-class activity:
	Slide 19: Map Example
	Slide 20: Consider this…
	Slide 21: Consider this…
	Slide 22: Hash Tables
	Slide 23: Hash Tables
	Slide 24: Hash Table Example:
	Slide 25: Hash Tables
	Slide 26: Hash Tables
	Slide 27: Hash Tables
	Slide 28: Hash Tables
	Slide 29: Perfect and Minimally Perfect Hash Functions
	Slide 30: Perfect and Minimally Perfect Hash Functions
	Slide 31: Perfect and Minimally Perfect Hash Functions
	Slide 32: Collision Example:
	Slide 33: Collision Resolution
	Slide 34: 1. Collision Resolution with Chaining
	Slide 35: 1. Collision Resolution with Chaining
	Slide 36: 1. Collision Resolution with Chaining
	Slide 37: 2. Collision Resolution with Open Addressing
	Slide 38: 2. Collision Resolution with Open Addressing
	Slide 39: 2. Collision Resolution with Open Addressing
	Slide 40: 2. Collision Resolution with Open Addressing
	Slide 41: 2. Collision Resolution with Open Addressing
	Slide 42: 2. Collision Resolution with Open Addressing

