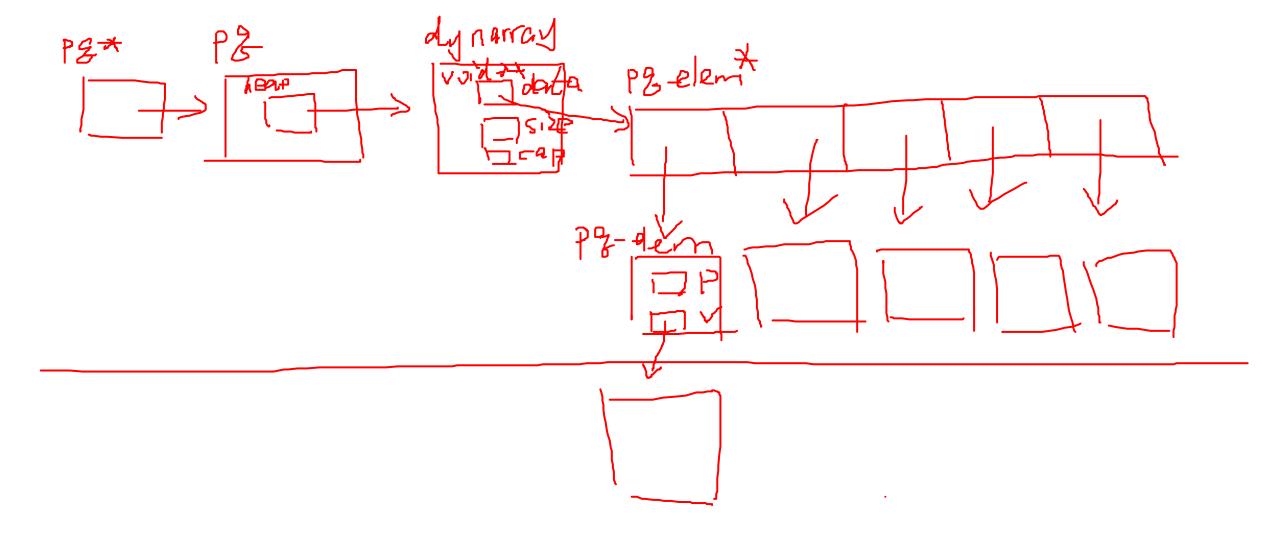
CS 261-020 Data Structures

Lecture 14 Maps and Hash Tables (cont.) 3/5/24, Tuesday

1

Odds and Ends

- Assignment 5 will be posted tomorrow
- Recitation 9 posted
- Recitation 10: Mock Coding Interview (Proficiency Test)
 - Go to your registered section!!!

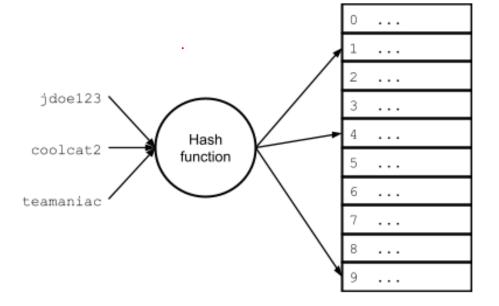


Review: Hash Tables

- A hash table is like an array (storing key/value structs), with a few important differences:
 - Elements can be indexed by values other than integers.
 - More than one element may share an index. (More later)

Key \rightarrow Hash function \rightarrow integer

hash = hash_function(key)
index = hash % array_size



Review: Hash Tables

- When choosing or designing a hash function, there are a few properties that are desirable:
 - **Determinism** a given input should always map to the same hash value.
 - Uniformity the inputs should be mapped as evenly as possible over the output range.
 - A non-uniform function can result in many collisions, where multiple elements are hashed to the same array index. (More later).
 - Speed the function should have low computational burden

Review: Perfect and Minimally Perfect Hash Functions

• Collision: some keys map to the same index:

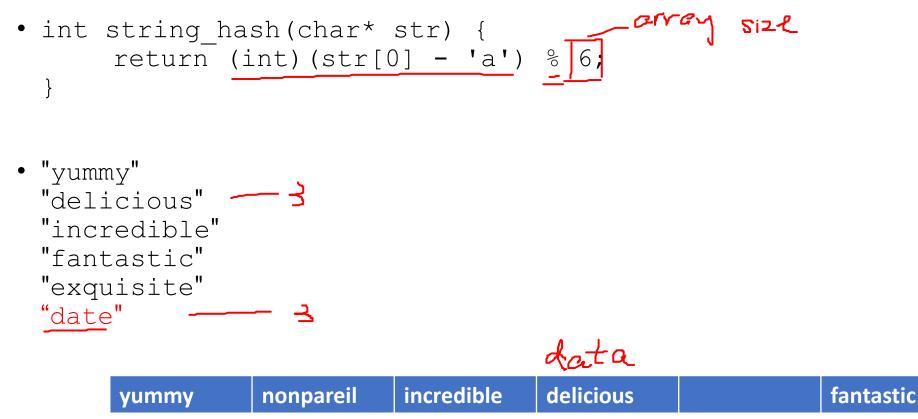
- x != y, but hash(x) == hash(y)
- A perfect hash function is one that results in no collisions.
- A minimally perfect hash function is one that results in no collisions for a table size that exactly equals the number of elements.

Perfect and Minimally Perfect Hash Functions

- In practice, we don't usually have such a nicely arranged situation, so it's rare that our hash function will be minimally perfect.
 - For example, even with perfectly uniform random distribution of elements and a hash table with a capacity of 1 million elements, there is a 95% probability of a collision with only 2450 elements
- This means that, most likely, we'll need to be able to deal with collisions

Collision Example:

• Hash function to store the words into a hash table.



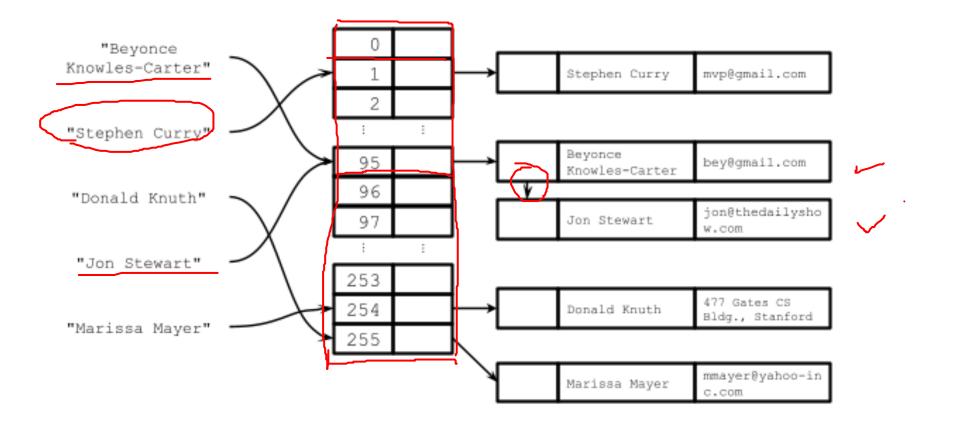
Collision Resolution

Two mechanisms for resolving hash collisions

- Chaining
- Open addressing

- The chaining method involves storing a collection of elements at each index in the hash table array.
 - Each collection is called a bucket or a chain.
- When a collision occurs, the new element is added to the collection at its corresponding hash index.
- Linked lists are a popular choice for maintaining the buckets themselves.
 - Other data structures could be used, e.g. a dynamic array or a balanced binary tree

• Here's what a hash table with linked list-based chains might look like:



- In a chained hash table,
- To loopup the value for a particular key:
 - Compute the element's bucket using the hash function
 - Search the data structure at that bucket for the element (using the key)
 - E.g. iterate through the items in the linked list.

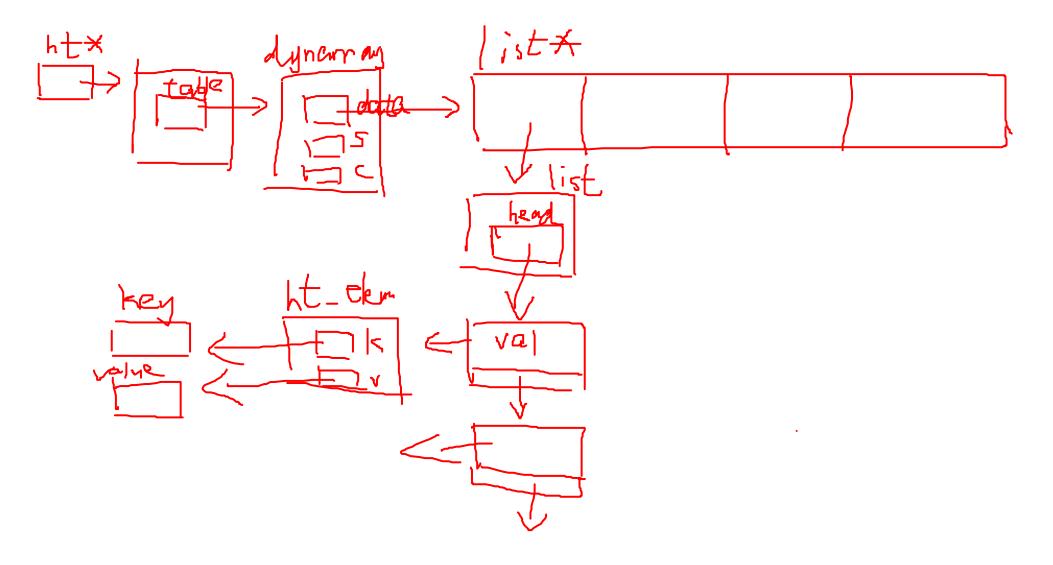
- To add/remove an element:
 - Compute the element's bucket using the hash function
 - add or remove the element to/from the appropriate bucket's data structure
 - E.g. iterate through the items in the linked list.

• Load factor: the average number of elements in each bucket:

$$\lambda = \frac{n}{m}$$

- n is the total number of elements stored in the table
- m is the number of buckets
- $\boldsymbol{\lambda}$ Is the load factor
- In a chained hash table, the load factor can be greater than 1.
- As the load factor increases, operations on the table will slow down.
- For a linked list-based chained table,
 - For successful searches, the average number of links traversed is λ / 2.
 - For unsuccessful searches, the average number of links traversed is λ .

- How to maintain the performance of the hash table?
- Double the number of buckets when the load factor reaches a certain limit (e.g. 8).
 - In other words, the hash table array could be implemented with a dynamic array whose resizing behavior is based on the load factor.
- How would we actually perform the resize?
- Re-compute the hash function for each element with the new number of buckets (i.e. using mod operator (%)).



- What is the **best-case complexity** of a linked list-based chained hash table?
 - Assume that the hash function has a good distribution.
 - If the number of buckets is great than or equal to number of elements, i.e.: m >= n
 - Then, O(1) 7 < 1

- What is the worst-case complexity of a linked list-based chained hash table?
 - O(n), since all of the elements might end up in the same bucket.

- What is the average-case complexity of a linked list-based chained hash table?
 - Assume that the hash function has a good distribution.
 - The average case for all operations is $O(\lambda)$.
 - If the number of buckets is adjusted according to the load factor, then the number of elements is a constant factor of the number of buckets, i.e.:

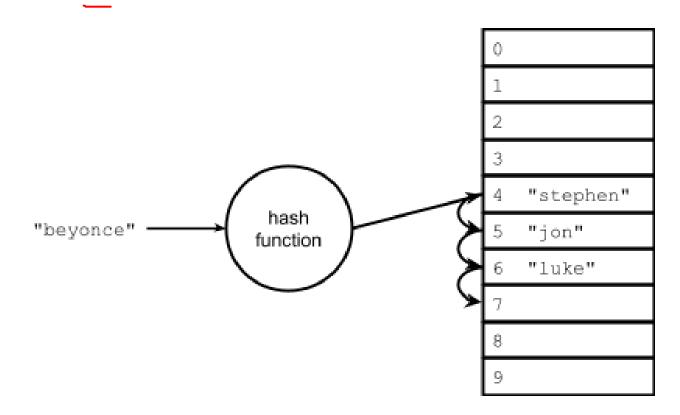
$$\lambda = \frac{n}{m} = \frac{O(m)}{m} = O(1)$$

• In other words, the average case performance of all operations can be kept to constant time.

- The open addressing method: involves probing for an empty spot
 - Probing: the process of searching for an empty position.
- When using open addressing, all hashed elements are stored directly in the hash table array
- To insert an element:
 - Use the hash function to compute an initial index i for the element.
 - If the hash table array at index i is empty, insert the element there and stop.
 - Otherwise, increment i to the next index in the probing sequence (e.g. i + 1) and repeat

- Probing: the process of searching for an empty position.
- There are many different probing schemes:
 - Linear probing: i = i + 1
 - Quadratic probing: i = i + j² (j = 1, 2, 3, ...)
 - Double hashing: i = i + j * h₂(key) (j = 1, 2, 3, ...)
 - Here, h₂ is a second, independent hash function.

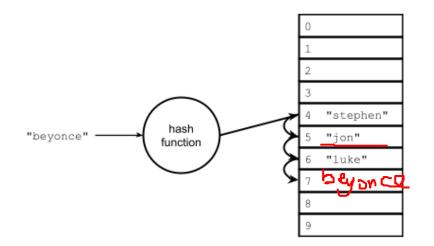
• For example, using linear probing, the key "beyonce" would be inserted at index 7, even though the hash function evaluates to 4 for that key:

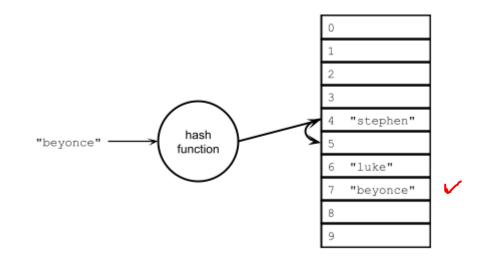


- To search for an element:
 - Use the hash function to compute an initial index i for the element
 - probe until we find either the element or an empty spot
 - If found an empty spot, then the element doesn't exist

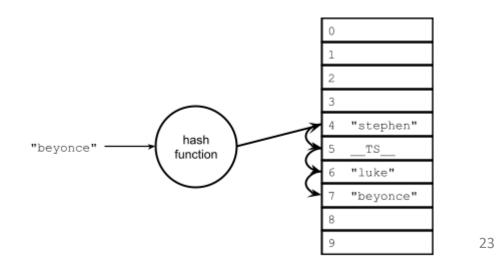
- What happens if we reach the end of the array while probing?
 - Simply wrap around to the beginning.

- What happens when we remove an element?
 - Search for the element, then remove it
- What about searching after removing?
 - This could disrupt probing for elements after it.
- For example, what if we removed "jon" and then searched for "beyonce"?

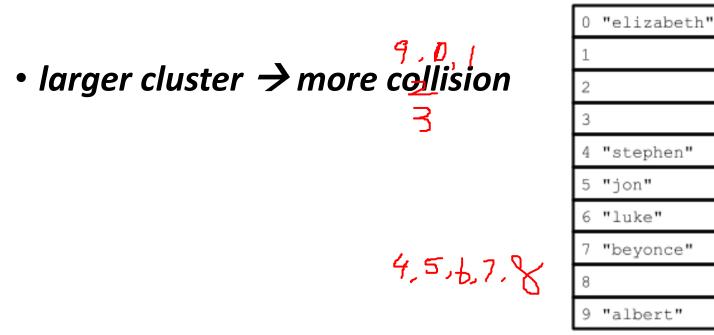




- To get around this problem, we use a special value known as the tombstone
- Now, when an element is removed, we insert the tombstone value.
 - This value can be replaced when adding a new entry, but it doesn't halt search for an existing element.
- With a tombstone value ___TS___ inserted for the removed "jon", the search above for "beyonce" could proceed as normal:



- One problem: clustering, where elements are placed into the table into clusters of adjacent indices.
- For example, using linear probing, the probability of a new entry being added to an existing cluster increases as the size of the cluster increases



- How to reduce clustering?
- By using quadratic probing and especially double hashing
- Using open addressing, a table's load factor cannot exceed 1.
- low load factor \rightarrow avoid collisions
- low load factor \rightarrow a lot of unused space
- In other words, there is a tradeoff between speed and space with open addressing.

What is the complexity of open addressing? (Assuming truly uniform hashing)

- To insert a given item into the table (that's not already there):
- the probability (p) that the first probe is successful is

$$p = \frac{m-n}{m} = \frac{m}{m} - \frac{n}{m} = l - \lambda$$

• There are m total slots and n filled slots, so m - n open spots.

What is the complexity of open addressing? (Assuming truly uniform hashing)

• If the first probe fails, the probability that the second probe succeeds is

$$\frac{m-n}{m-1} \ge \frac{m-n}{m} = p$$

 There are still m - n remaining open slots, but now we only have a total of m - 1 slots to look at, since we've examined one already.

What is the complexity of open addressing? (Assuming truly uniform hashing)

• If the first two probes fail, the probability that the third probe succeeds is

$$\frac{m-n}{m-2} \ge \frac{m-n}{m} = p$$

- There are still m n remaining open slots, but now we only have a total of m 2 slots to look at, since we've examined two already.
- And so forth. In other words, for each probe, the probability of success is at least p

What is the complexity of open addressing? (Assuming truly uniform hashing)

• The expected number of probes until success is: (a geometric distribution)

$$\frac{1}{p} = \frac{1}{\frac{m-n}{m}} = \frac{1}{1-\frac{n}{m}} = \frac{1}{1-\lambda}$$

• In other words, the expected number of probes for any given operation is $O(\frac{1}{1-\lambda})$.

The expected number of probes for any given operation is $O(\frac{1}{1-\lambda})$.

- If we limit the load factor to a constant and reasonably small number, our operations will be O(1) on average.
- E.g. if we have $\lambda = 0.75$, then we would expect 4 probes, on average. For $\lambda = 0.9$, we would expect 10 probes.