
CS 261-020
Data Structures

Lecture 14

Maps and Hash Tables (cont.)

3/5/24, Tuesday

1

Odds and Ends

• Assignment 5 will be posted tomorrow

• Recitation 9 posted

• Recitation 10: Mock Coding Interview (Proficiency Test)
• Go to your registered section!!!

2

3

Review: Hash Tables

4

• A hash table is like an array (storing key/value structs), with a few
important differences:
• Elements can be indexed by values other than integers.

• More than one element may share an index. (More later)

Key → Hash function → integer

hash = hash_function(key)

index = hash % array_size

Review: Hash Tables

5

• When choosing or designing a hash function, there are a few properties
that are desirable:
• Determinism – a given input should always map to the same hash value.

• Uniformity – the inputs should be mapped as evenly as possible over the output
range.

• A non-uniform function can result in many collisions, where multiple elements are hashed to
the same array index. (More later).

• Speed – the function should have low computational burden

Review: Perfect and Minimally Perfect Hash Functions

6

• Collision: some keys map to the same index:
• x != y, but hash(x) == hash(y)

• A perfect hash function is one that results in no collisions.

• A minimally perfect hash function is one that results in no collisions for a
table size that exactly equals the number of elements.

Perfect and Minimally Perfect Hash Functions

7

• In practice, we don’t usually have such a nicely arranged situation, so it’s
rare that our hash function will be minimally perfect.
• For example, even with perfectly uniform random distribution of elements and a

hash table with a capacity of 1 million elements, there is a 95% probability of a
collision with only 2450 elements

• This means that, most likely, we’ll need to be able to deal with collisions

Collision Example:

• Hash function to store the words into a hash table.
• int string_hash(char* str) {

return (int)(str[0] - 'a') % 6;

}

• "yummy"
"delicious"
"incredible"
"fantastic"
"exquisite"
“date"

8

yummy nonpareil incredible delicious fantastic

Collision Resolution

9

Two mechanisms for resolving hash collisions

• Chaining

• Open addressing

1. Collision Resolution with Chaining

10

• The chaining method involves storing a collection of elements at each
index in the hash table array.
• Each collection is called a bucket or a chain.

• When a collision occurs, the new element is added to the collection at its
corresponding hash index.

• Linked lists are a popular choice for maintaining the buckets themselves.
• Other data structures could be used, e.g. a dynamic array or a balanced binary tree

1. Collision Resolution with Chaining

11

• Here’s what a hash table with linked list-based chains might look like:

1. Collision Resolution with Chaining

12

• In a chained hash table,

• To loopup the value for a particular key:
• Compute the element’s bucket using the hash function

• Search the data structure at that bucket for the element (using the key)
• E.g. iterate through the items in the linked list.

• To add/remove an element:
• Compute the element’s bucket using the hash function

• add or remove the element to/from the appropriate bucket’s data structure
• E.g. iterate through the items in the linked list.

1. Collision Resolution with Chaining
• Load factor: the average number of elements in each bucket:

• n is the total number of elements stored in the table

• m is the number of buckets

• 𝝺 Is the load factor

• In a chained hash table, the load factor can be greater than 1.

• As the load factor increases, operations on the table will slow down.

• For a linked list-based chained table,
• For successful searches, the average number of links traversed is 𝝺 / 2.

• For unsuccessful searches, the average number of links traversed is 𝝺.

13

1. Collision Resolution with Chaining
- How to maintain the performance of the hash table?

• Double the number of buckets when the load factor reaches a certain limit
(e.g. 8).
• In other words, the hash table array could be implemented with a dynamic array

whose resizing behavior is based on the load factor.

- How would we actually perform the resize?

• Re-compute the hash function for each element with the new number of
buckets (i.e. using mod operator (%)).

14

15

1. Collision Resolution with Chaining
• What is the best-case complexity of a linked list-based chained hash table?

• Assume that the hash function has a good distribution.

• If the number of buckets is great than or equal to number of elements, i.e.: m >= n

• Then, O(1)

• What is the worst-case complexity of a linked list-based chained hash
table?
• O(n), since all of the elements might end up in the same bucket.

16

1. Collision Resolution with Chaining
• What is the average-case complexity of a linked list-based chained hash

table?
• Assume that the hash function has a good distribution.

• The average case for all operations is O(𝝺).

• If the number of buckets is adjusted according to the load factor, then the number
of elements is a constant factor of the number of buckets, i.e.:

• In other words, the average case performance of all operations can be kept to
constant time.

17

2. Collision Resolution with Open Addressing

18

• The open addressing method: involves probing for an empty spot
• Probing: the process of searching for an empty position.

• When using open addressing, all hashed elements are stored directly in
the hash table array

• To insert an element:
• Use the hash function to compute an initial index i for the element.

• If the hash table array at index i is empty, insert the element there and stop.

• Otherwise, increment i to the next index in the probing sequence (e.g. i + 1) and
repeat

2. Collision Resolution with Open Addressing

19

• Probing: the process of searching for an empty position.

• There are many different probing schemes:
• Linear probing: i = i + 1

• Quadratic probing: i = i + j2 (j = 1, 2, 3, …)

• Double hashing: i = i + j * h2(key) (j = 1, 2, 3, …)
• Here, h2 is a second, independent hash function.

2. Collision Resolution with Open Addressing

20

• For example, using linear probing, the key "beyonce" would be inserted at
index 7, even though the hash function evaluates to 4 for that key:

2. Collision Resolution with Open Addressing

21

• To search for an element:
• Use the hash function to compute an initial index i for the element

• probe until we find either the element or an empty spot
• If found an empty spot, then the element doesn’t exist

• What happens if we reach the end of the array while probing?
• Simply wrap around to the beginning.

2. Collision Resolution with Open Addressing

22

• What happens when we remove an element?
• Search for the element, then remove it

• What about searching after removing?
• This could disrupt probing for elements after it.

• For example, what if we removed "jon" and then searched for "beyonce"?

2. Collision Resolution with Open Addressing

23

• To get around this problem, we use a special value known as the tombstone

• Now, when an element is removed, we insert the tombstone value.
• This value can be replaced when adding a new entry, but it doesn’t halt search for an existing

element.

• With a tombstone value __TS__ inserted for the removed "jon", the search above for
"beyonce" could proceed as normal:

2. Collision Resolution with Open Addressing
• One problem: clustering, where elements are placed into the table into

clusters of adjacent indices.

• For example, using linear probing, the probability of a new entry being
added to an existing cluster increases as the size of the cluster increases

• larger cluster →more collision

24

2. Collision Resolution with Open Addressing
• How to reduce clustering?

• By using quadratic probing and especially double hashing

• Using open addressing, a table’s load factor cannot exceed 1.

• low load factor → avoid collisions

• low load factor → a lot of unused space

• In other words, there is a tradeoff between speed and space with open
addressing.

25

2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform
hashing)

• To insert a given item into the table (that’s not already there):

• the probability (p) that the first probe is successful is

p =
𝑚 − 𝑛

𝑚

• There are m total slots and n filled slots, so m - n open spots.

26

2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform
hashing)

• If the first probe fails, the probability that the second probe succeeds is

𝑚−𝑛

𝑚 −1
≥

𝑚−𝑛

𝑚
= 𝑝

• There are still m - n remaining open slots, but now we only have a total of m - 1
slots to look at, since we’ve examined one already.

27

2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform
hashing)

• If the first two probes fail, the probability that the third probe succeeds is
𝑚−𝑛

𝑚 −2
≥

𝑚−𝑛

𝑚
= 𝑝

• There are still m - n remaining open slots, but now we only have a total of m - 2
slots to look at, since we’ve examined two already.

• And so forth. In other words, for each probe, the probability of success is
at least p

28

2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform
hashing)

• The expected number of probes until success is: (a geometric distribution)

• In other words, the expected number of probes for any given operation is
O().

29

Collision Resolution with Open Addressing

The expected number of probes for any given operation is

O().

• If we limit the load factor to a constant and reasonably small
number, our operations will be O(1) on average.

• E.g. if we have 𝝺 = 0.75, then we would expect 4 probes, on
average. For 𝝺 = 0.9, we would expect 10 probes.

30

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3
	Slide 4: Review: Hash Tables
	Slide 5: Review: Hash Tables
	Slide 6: Review: Perfect and Minimally Perfect Hash Functions
	Slide 7: Perfect and Minimally Perfect Hash Functions
	Slide 8: Collision Example:
	Slide 9: Collision Resolution
	Slide 10: 1. Collision Resolution with Chaining
	Slide 11: 1. Collision Resolution with Chaining
	Slide 12: 1. Collision Resolution with Chaining
	Slide 13: 1. Collision Resolution with Chaining
	Slide 14: 1. Collision Resolution with Chaining
	Slide 15
	Slide 16: 1. Collision Resolution with Chaining
	Slide 17: 1. Collision Resolution with Chaining
	Slide 18: 2. Collision Resolution with Open Addressing
	Slide 19: 2. Collision Resolution with Open Addressing
	Slide 20: 2. Collision Resolution with Open Addressing
	Slide 21: 2. Collision Resolution with Open Addressing
	Slide 22: 2. Collision Resolution with Open Addressing
	Slide 23: 2. Collision Resolution with Open Addressing
	Slide 24: 2. Collision Resolution with Open Addressing
	Slide 25: 2. Collision Resolution with Open Addressing
	Slide 26: 2. Collision Resolution with Open Addressing
	Slide 27: 2. Collision Resolution with Open Addressing
	Slide 28: 2. Collision Resolution with Open Addressing
	Slide 29: 2. Collision Resolution with Open Addressing
	Slide 30: Collision Resolution with Open Addressing

