CS 261-020
Data Structures

Lecture 14
Maps and Hash Tables (cont.)
3/5/24, Tuesday

) Oregon State

Odds and Ends

e Assighnment 5 will be posted tomorrow
* Recitation 9 posted

* Recitation 10: Mock Coding Interview (Proficiency Test)
* Go to your registered section!!!

Review: Hash Tables

* A hash table is like an array (storing key/value structs), with a few
important differences:

* Elements can be indexed by values other than integers.
 More than one element may share an index. (More later)

Key 2> Hashfunction -2 integer

Jdeelzd 3 ...
hash = hash function (key) N L
index = hash % array size —

tLeamaniac

Review: Hash Tables

* When choosing or designing a hash function, there are a few properties
that are desirable:

* Determinism — a given input should always map to the same hash value.

* Uniformity — the inputs should be mapped as evenly as possible over the output
range.

* A non-uniform function can result in many collisions, where multiple elements are hashed to
the same array index. (More later).

* Speed — the function should have low computational burden

Review: Perfect and Minimally Perfect Hash Functions

* Collision: some keys map to the same index:
e x I=y, but hash(x) == hash(y)

* A perfect hash function is one that results in no collisions.

* A minimally perfect hash function is one that results in no collisions for a
table size that exactly equals the number of elements.

Perfect and Minimally Perfect Hash Functions

* In practice, we don’t usually have such a nicely arranged situation, so it’s
rare that our hash function will be minimally perfect.

* For example, even with perfectly uniform random distribution of elements and a
hash table with a capacity of 1 million elements, there is a 95% probability of a
collision with only 2450 elements

* This means that, most likely, we’ll need to be able to deal with collisions

Collision Example:

e Hash function to store the words into a hash table.

* int string hash(char* str) ¢{ /_a-r‘ra’v‘] sizt
return (int) (str[0] - 'a') % |6;

}

e "yummy"
"delicious" —— 3
"incredible"
"fantastic"
"exquisite”

“datell %

Aot a
yummy | nonparedl | increible | dofisous | | antastic__

8

Collision Resolution

Two mechanisms for resolving hash collisions

* Chaining
* Open addressing

"Bayonce 0
* - ol - "
Fnowles=-Carter 1 - =phe mupiam:
"Stephen Curry” :
el .
95 -
"Donald Enuth® 96 ¥
Bk
a7 Jon Stewart .
Jon Stewart
253
254 * Donald Knuth
(LY, [—— |
Maris=sa Mayer SEs
_ . mmay=r
& Hayer o.oom

"bevonoe"

"stephen"

2 "1oan”
& "luke"
7

i

LE

1. Collision Resolution with Chaining

* The chaining method involves storing a collection of elements at each
index in the hash table array.

 Each collection is called a bucket or a chain.

 When a collision occurs, the new element is added to the collection at its
corresponding hash index.

* Linked lists are a popular choice for maintaining the buckets themselves.
e Other data structures could be used, e.g. a dynamic array or a balanced binary tree

10

1. Collision Resolution with Chaining

* Here’s what a hash table with linked list-based chains might look like:

PRBeyonoe
Knowles=-Carter" . I
I /
ilyst I o
Stewart
'.'-‘.n:-'.'i: I
Marissa Mayer™
B .n_".---l.I

11

1. Collision Resolution with Chaining

* |n a chained hash table,

* To loopup the value for a particular key:
* Compute the element’s bucket using the hash function

» Search the data structure at that bucket for the element (using the key)
e E.g.iterate through the items in the linked list.

* To add/remove an element:
* Compute the element’s bucket using the hash function

* add or remove the element to/from the appropriate bucket’s data structure
e E.g. iterate through the items in the linked list.

12

1. Collision Resolution with Chaining

* Load factor: the average number of elements in each bucket:
A = =

I
* nis the total number of elements stored in the table

* mis the number of buckets
* Alsthe load factor

* In a chained hash table, the load factor can be greater than 1.
* As the load factor increases, operations on the table will slow down.

* For a linked list-based chained table,

* For successful searches, the average number of links traversed is A / 2.
* For unsuccessful searches, the average number of links traversed is A.

13

1. Collision Resolution with Chaining

- How to maintain the performance of the hash table?

 Double the number of buckets when the load factor reaches a certain limit
(e.g. 8).

* |In other words, the hash table array could be implemented with a dynamic array
whose resizing behavior is based on the load factor.

- How would we actually perform the resize?

* Re-compute the hash function for each element with the new number of
buckets (i.e. using mod operator (%)).

14

1. Collision Resolution with Chaining

* What is the best-case complexity of a linked list-based chained hash table?
* Assume that the hash function has a good distribution.

* If the number of buckets is great than or equal to number of elements, i.e.. m>=n
e Then, O(1) A< i

* What is the worst-case complexity of a linked list-based chained hash
table?

* O(n), since all of the elements might end up in the same bucket.

16

1. Collision Resolution with Chaining

 What is the average-case complexity of a linked list-based chained hash
table?
* Assume that the hash function has a good distribution.
* The average case for all operations is O(A).
* |f the number of buckets is adjusted according to the load factor, then the number

=2 =20 = (1)

* |n other words, the average case performance of all operations can be kept to
constant time.

17

2. Collision Resolution with Open Addressing

* The open addressing method: involves probing for an empty spot
* Probing: the process of searching for an empty position.

 When using open addressing, all hashed elements are stored directly in
the hash table array

* To insert an element:
e Use the hash function to compute an initial index i for the element.
* |f the hash table array at index i is empty, insert the element there and stop.

* Otherwise, increment i to the next index in the probing sequence (e.g.i + 1) and
repeat

18

2. Collision Resolution with Open Addressing

* Probing: the process of searching for an empty position.

* There are many different probing schemes:
T Linear probing:i=i+1
e Quadratic probing:i=i+j* (j=1, 2,3, ...)
* Double hashing:i=i+j* h,(key)(j=1,2,3,..)

* Here, h, is a second, independent hash function.

19

2. Collision Resolution with Open Addressing

* For example, using linear probing, the key "beyonce" would be inserted at
index 7, even though the hash function evaluates to 4 for that key:

C—

20

2. Collision Resolution with Open Addressing

* To search for an element:
* Use the hash function to compute an initial index i for the element

» probe until we find either the element or an empty spot
* If found an empty spot, then the element doesn’t exist

« What happens if we reach the end of the array while probing?
* Simply wrap around to the beginning.

21

2. Collision Resolution with Open Addressing

 What happens when we remove an element?
e Search for the element, then remove it

 What about searching after removing?
* This could disrupt probing for elements after it.

* For example, what if we removed "jon" and then searched for "beyonce"?

2
3
3
» 4 "stephen"
_ 4 "stephen”
"heyonce" 5 "Enn"
! "bayonce" 5
& "luke"
6 "luke"
7 b&bv\ (ad¥
H Ll 2y -\,_,-\,,-\,I_.\II
oy

22

2. Collision Resolution with Open Addressing

* To get around this problem, we use a special value known as the tombstone

* Now, when an element is removed, we insert the tombstone value.

* This value can be replaced when adding a new entry, but it doesn’t halt search for an existing
element.

 With a tombstone value TS _inserted for the removed "jon", the search above for
"beyonce" could proceed as normal:

3

4 “stephen”
"beyonce" 5 TS

6 "luke®

7 "bpeyonce"

2. Collision Resolution with Open Addressing

* One problem: clustering, where elements are placed into the table into
clusters of adjacent indices.

* For example, using linear probing, the probability of a new entry being
added to an existing cluster increases as the size of the cluster increases

"elizaketh"™

57_‘12, 1
* larger cluster = more callision
3

Lad 3 |l o]

4 "stephen"

g n jl:'_:-l"I"

& "luke®

7 "beyvonce®
7.5467.% [

2 "albert"”

2. Collision Resolution with Open Addressing

* How to reduce clustering?
* By using quadratic probing and especially double hashing

e Using open addressing, a table’s Ioﬂ factor cannot exceed 1.

* low load factor = avoid collisions
* low load factor = a lot of unused space

* In other words, there is a tradeoff between speed and space with open
addressing.

25

2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform
hashing)

* To insert a given item into the table (that’s not already there):
* the probability (p) that the first probe is successful is

n
Vi

—r
—

p:

A
m n1

* There are m total slots and n filled slots, so m - n open spots.

26

2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform
hashing)

* If the first probe fails, the probability that the second probe succeeds is

m-—-n m-—-n
> — =
1= p

3

* There are still m - n remaining open slots, but now we only have a totalof m -1
slots to look at, since we’ve examined one already.

27

2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform
hashing)

* If the first two probes fail, the probability that the third probe succeeds is

m-—-n > m-—-n — p

m —2 m

* There are still m - n remaining open slots, but now we only have a total of m - 2
slots to look at, since we’ve examined two already.

* And so forth. In other words, for each probe, the probability of success is
at least p

28

2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform
hashing)

* The expected number of probes until success is: (a geometric distribution)
1 1 1 1

* In other words, the expected number of probes for any given operation is
o —).
1-A

29

Collision Resolution with Open Addressing

The expected number of probes for any given operation is
O +=

* If we limit the load factor to a constant and reasonably small
number, our operations will be O(1) on average.

* E.g. if we have A =0.75, then we would expect 4 probes, on
average. For A =0.9, we would expect 10 probes.

30

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3
	Slide 4: Review: Hash Tables
	Slide 5: Review: Hash Tables
	Slide 6: Review: Perfect and Minimally Perfect Hash Functions
	Slide 7: Perfect and Minimally Perfect Hash Functions
	Slide 8: Collision Example:
	Slide 9: Collision Resolution
	Slide 10: 1. Collision Resolution with Chaining
	Slide 11: 1. Collision Resolution with Chaining
	Slide 12: 1. Collision Resolution with Chaining
	Slide 13: 1. Collision Resolution with Chaining
	Slide 14: 1. Collision Resolution with Chaining
	Slide 15
	Slide 16: 1. Collision Resolution with Chaining
	Slide 17: 1. Collision Resolution with Chaining
	Slide 18: 2. Collision Resolution with Open Addressing
	Slide 19: 2. Collision Resolution with Open Addressing
	Slide 20: 2. Collision Resolution with Open Addressing
	Slide 21: 2. Collision Resolution with Open Addressing
	Slide 22: 2. Collision Resolution with Open Addressing
	Slide 23: 2. Collision Resolution with Open Addressing
	Slide 24: 2. Collision Resolution with Open Addressing
	Slide 25: 2. Collision Resolution with Open Addressing
	Slide 26: 2. Collision Resolution with Open Addressing
	Slide 27: 2. Collision Resolution with Open Addressing
	Slide 28: 2. Collision Resolution with Open Addressing
	Slide 29: 2. Collision Resolution with Open Addressing
	Slide 30: Collision Resolution with Open Addressing

