
CS 261-020
Data Structures

Lecture 14

Maps and Hash Tables (cont.)

3/5/24, Tuesday
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Odds and Ends

• Assignment 5 will be posted tomorrow

• Recitation 9 posted

• Recitation 10: Mock Coding Interview (Proficiency Test)
• Go to your registered section!!! 
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Review: Hash Tables
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• A hash table is like an array (storing key/value structs), with a few 
important differences:
• Elements can be indexed by values other than integers.

• More than one element may share an index. (More later)

Key     → Hash function    → integer 

hash = hash_function(key)

index = hash % array_size



Review: Hash Tables
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• When choosing or designing a hash function, there are a few properties 
that are desirable:
• Determinism – a given input should always map to the same hash value.

• Uniformity – the inputs should be mapped as evenly as possible over the output 
range.

• A non-uniform function can result in many collisions, where multiple elements are hashed to 
the same array index.  (More later).

• Speed – the function should have low computational burden



Review: Perfect and Minimally Perfect Hash Functions
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• Collision: some keys map to the same index:
• x != y, but hash(x) == hash(y)

• A perfect hash function is one that results in no collisions.

• A minimally perfect hash function is one that results in no collisions for a 
table size that exactly equals the number of elements.



Perfect and Minimally Perfect Hash Functions
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• In practice, we don’t usually have such a nicely arranged situation, so it’s 
rare that our hash function will be minimally perfect.
• For example, even with perfectly uniform random distribution of elements and a 

hash table with a capacity of 1 million elements, there is a 95% probability of a 
collision with only 2450 elements

• This means that, most likely, we’ll need to be able to deal with collisions



Collision Example: 

• Hash function to store the words into a hash table. 
• int string_hash(char* str) {

return (int)(str[0] - 'a') % 6;

}

• "yummy"
"delicious"
"incredible"
"fantastic"
"exquisite"
“date"
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yummy nonpareil incredible delicious fantastic



Collision Resolution
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Two mechanisms for resolving hash collisions

• Chaining 

• Open addressing



1. Collision Resolution with Chaining
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• The chaining method involves storing a collection of elements at each 
index in the hash table array.
• Each collection is called a bucket or a chain.

• When a collision occurs, the new element is added to the collection at its 
corresponding hash index.

• Linked lists are a popular choice for maintaining the buckets themselves.
• Other data structures could be used, e.g. a dynamic array or a balanced binary tree



1. Collision Resolution with Chaining
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• Here’s what a hash table with linked list-based chains might look like:



1. Collision Resolution with Chaining
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• In a chained hash table, 

• To loopup the value for a particular key:
• Compute the element’s bucket using the hash function

• Search the data structure at that bucket for the element (using the key)
• E.g. iterate through the items in the linked list.

• To add/remove an element: 
• Compute the element’s bucket using the hash function

• add or remove the element to/from the appropriate bucket’s data structure
• E.g. iterate through the items in the linked list.



1. Collision Resolution with Chaining
• Load factor: the average number of elements in each bucket:

• n is the total number of elements stored in the table

• m is the number of buckets

• 𝝺 Is the load factor

• In a chained hash table, the load factor can be greater than 1.

• As the load factor increases, operations on the table will slow down.

• For a linked list-based chained table, 
• For successful searches, the average number of links traversed is 𝝺 / 2.

• For unsuccessful searches, the average number of links traversed is 𝝺.
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1. Collision Resolution with Chaining
- How to maintain the performance of the hash table? 

• Double the number of buckets when the load factor reaches a certain limit 
(e.g. 8).
• In other words, the hash table array could be implemented with a dynamic array 

whose resizing behavior is based on the load factor.

- How would we actually perform the resize?

• Re-compute the hash function for each element with the new number of 
buckets (i.e. using mod operator (%)).
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1. Collision Resolution with Chaining
• What is the best-case complexity of a linked list-based chained hash table?

• Assume that the hash function has a good distribution.

• If the number of buckets is great than or equal to number of elements, i.e.: m >= n

• Then, O(1)

• What is the worst-case complexity of a linked list-based chained hash 
table? 
• O(n), since all of the elements might end up in the same bucket.
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1. Collision Resolution with Chaining
• What is the average-case complexity of a linked list-based chained hash 

table?
• Assume that the hash function has a good distribution.

• The average case for all operations is O(𝝺).

• If the number of buckets is adjusted according to the load factor, then the number 
of elements is a constant factor of the number of buckets, i.e.:

• In other words, the average case performance of all operations can be kept to 
constant time.
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2. Collision Resolution with Open Addressing
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• The open addressing method: involves probing for an empty spot
• Probing: the process of searching for an empty position.

• When using open addressing, all hashed elements are stored directly in 
the hash table array

• To insert an element:
• Use the hash function to compute an initial index i for the element.

• If the hash table array at index i is empty, insert the element there and stop.

• Otherwise, increment i to the next index in the probing sequence (e.g. i + 1) and 
repeat



2. Collision Resolution with Open Addressing
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• Probing: the process of searching for an empty position.

• There are many different probing schemes:
• Linear probing: i = i + 1

• Quadratic probing: i = i + j2 (j = 1, 2, 3, …)

• Double hashing: i = i + j * h2(key) (j = 1, 2, 3, …)
• Here, h2 is a second, independent hash function.



2. Collision Resolution with Open Addressing
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• For example, using linear probing, the key "beyonce" would be inserted at 
index 7, even though the hash function evaluates to 4 for that key:



2. Collision Resolution with Open Addressing
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• To search for an element:
• Use the hash function to compute an initial index i for the element

• probe until we find either the element or an empty spot
• If found an empty spot, then the element doesn’t exist

• What happens if we reach the end of the array while probing?
• Simply wrap around to the beginning.



2. Collision Resolution with Open Addressing
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• What happens when we remove an element?
• Search for the element, then remove it

• What about searching after removing?   
• This could disrupt probing for elements after it. 

• For example, what if we removed "jon" and then searched for "beyonce"?



2. Collision Resolution with Open Addressing
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• To get around this problem, we use a special value known as the tombstone

• Now, when an element is removed, we insert the tombstone value.
• This value can be replaced when adding a new entry, but it doesn’t halt search for an existing 

element.

• With a tombstone value __TS__ inserted for the removed "jon", the search above for 
"beyonce" could proceed as normal:



2. Collision Resolution with Open Addressing
• One problem: clustering, where elements are placed into the table into 

clusters of adjacent indices.

• For example, using linear probing, the probability of a new entry being 
added to an existing cluster increases as the size of the cluster increases

• larger cluster →more collision
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2. Collision Resolution with Open Addressing
• How to reduce clustering? 

• By using quadratic probing and especially double hashing

• Using open addressing, a table’s load factor cannot exceed 1.

• low load factor → avoid collisions

• low load factor → a lot of unused space

• In other words, there is a tradeoff between speed and space with open 
addressing.
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2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform 
hashing)

• To insert a given item into the table (that’s not already there):

• the probability (p) that the first probe is successful is  

p =
𝑚 − 𝑛

𝑚

• There are m total slots and n filled slots, so m - n open spots.
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2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform 
hashing)

• If the first probe fails, the probability that the second probe succeeds is 

𝑚−𝑛

𝑚 −1
≥

𝑚−𝑛

𝑚
= 𝑝

• There are still m - n remaining open slots, but now we only have a total of m - 1 
slots to look at, since we’ve examined one already.
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2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform 
hashing)

• If the first two probes fail, the probability that the third probe succeeds is 
𝑚−𝑛

𝑚 −2
≥

𝑚−𝑛

𝑚
= 𝑝

• There are still m - n remaining open slots, but now we only have a total of m - 2 
slots to look at, since we’ve examined two already.

• And so forth. In other words, for each probe, the probability of success is 
at least p
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2. Collision Resolution with Open Addressing
What is the complexity of open addressing? (Assuming truly uniform 
hashing)

• The expected number of probes until success is: (a geometric distribution)

• In other words, the expected number of probes for any given operation is 
O(          ).
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Collision Resolution with Open Addressing

The expected number of probes for any given operation is 

O(          ).

• If we limit the load factor to a constant and reasonably small 
number, our operations will be O(1) on average.

• E.g. if we have 𝝺 = 0.75, then we would expect 4 probes, on 
average.  For 𝝺 = 0.9, we would expect 10 probes.
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