CS 261-020
Data Structures
Lecture 15
Graphs
3/7/24, Thursday
Graph

• **Graph** – a collection of objects or states, where some pairs of those objects are related or connected in some way.

• Graphs examples in computer science:
 • Social networks like Facebook or Twitter
 • Computer graphics
 • Machine learning
 • Computer vision
 • Logistics and optimization
 • Computer networking
Graph

• A graph is composed of vertices (or nodes or points) and edges (or arcs or lines).

• Vertices represent objects, states (i.e. conditions or configurations), locations, etc.
 • Form a set where each vertex is unique: $V = \{v_1, v_2, v_3, \ldots, v_n\}$.
Graph

- Edges represent relationships or connections between vertices.
 - These are represented as vertex pairs: $E = \{(v_i, v_j), \ldots\}$
 - Edges can be directed or undirected.
 - If there is an edge between v_i and v_j, then v_i and v_j are said to be adjacent (or they are neighbors).
 - Edges can be weighted or unweighted.

- An undirected edge is like a friend relationship in Facebook:
Graph

• A directed edge is like a “follows” relationship in Twitter,

- The edge is directed from Han to Chewie.
- Han is the head of this edge and that Chewie is its tail.
- Chewie is a direct successor of Han and that Han is a direct predecessor of Chewie.
- Chewie is reachable from Han.
Graph

• An example graph with 6 vertices and 7 undirected, unweighted edges:
Graph

• An example of a similar graph with directed, weighted edges:
Graph

• Graphs represent general relationships between objects.
 • A node may have connections to any number of other nodes.
 • There can be multiple paths (or no path) from one node to another.
 • There can be cycles (loops) in the graph, where there is a path from one node back to itself.

• Trees are a special, more restricted subclass of graphs.
Questions we might want to ask about a graph:

- Is X in the graph?
- Is Y reachable from X?
- What nodes are reachable from X?
- Are X and Y adjacent?
- What’s the shortest path from X to Y?
- How many edges between A and Y?
Representing Graphs

• Two main ways to represent a graph in practice:

 • An **adjacency list**: each vertex stores a list of its adjacent vertices.

 • An **adjacency matrix**: a two-dimensional matrix whose rows and columns represent vertices. If there is an edge between \(v_i \) and \(v_j \), the value at location \((i, j)\) in the matrix will be non-zero.
Representing Graphs

• Consider this graph, where flights between US airports are represented, as an example:
Representing Graphs

• As an **adjacency list**, this graph would look like this:

- ATL: [ORD, PHL, STL],
- BOS: [ORD, PHL],
- LAX: [ORD, SFO, STL],
- MSP: [ORD, PDX, SEA, SFO],
- ORD: [ATL, BOS, LAX, MSP, PHL, SFO, STL],
- PDX: [MSP, SEA, SFO],
- PHL: [ATL, BOS, ORD],
- SEA: [MSP, PDX],
- SFO: [LAX, MSP, ORD, PDX],
- STL: [ATL, LAX, ORD]
Representing Graphs

- As an **adjacency matrix**, the graph would look like this:

<table>
<thead>
<tr>
<th></th>
<th>ATL</th>
<th>BOS</th>
<th>LAX</th>
<th>MSP</th>
<th>ORD</th>
<th>PDX</th>
<th>PHL</th>
<th>SEA</th>
<th>SFO</th>
<th>STL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BOS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LAX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MSP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ORD</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PDX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PHL</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SEA</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SFO</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Note that this matrix is **symmetric**.
Representing Graphs

• What is the space complexity of each of these representations?
 • Adjacency list: $O(|V| + |E|)$
 • Adjacency matrix: $O(|V|^2)$

• Thus, the adjacency list is more space efficient when the graph is sparse, i.e. when it has relatively few edges.
Representing Graphs

• What if our graph is a **directed graph**, e.g. if we have a flight from airport A to airport B but not a return flight?

• Each of these representations can still be used. For example, say we have this graph:
Representing Graphs

• The adjacency list:

ATL: [ORD, PHL, STL],
BOS: [ORD, PHL],
LAX: [ORD, SFO],
MSP: [PDX, SFO],
ORD: [MSP, STL],
PDX: [SEA, SFO],
PHL: [BOS, ORD],
SEA: [MSP, PDX],
SFO: [ORD, PDX],
STL: [LAX, ORD]
Representing Graphs

- The adjacency matrix for this graph:

<table>
<thead>
<tr>
<th></th>
<th>ATL</th>
<th>BOS</th>
<th>LAX</th>
<th>MSP</th>
<th>ORD</th>
<th>PDX</th>
<th>PHL</th>
<th>SEA</th>
<th>SFO</th>
<th>STL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BOS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LAX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MSP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ORD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PDX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PHL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STL</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Note that this matrix is no longer symmetric.
Representing Graphs

- Adding **weights** to the graph. Say our graph contains the costs of flights between cities:
Representing Graphs

• The adjacency list would store the weights/costs along with the edges:

ATL: [{ORD: 180}, {PHL: 250}, {STL: 160}],
BOS: [{ORD: 115}, {PHL: 69}],
LAX: [{ORD: 250}, {SFO: 75}],
MSP: [{PDX: 175}, {SFO: 200}],
ORD: [{MSP: 125}, {STL: 89}],
PDX: [{SEA: 98}, {SFO: 125}],
PHL: [{BOS: 69}, {ORD: 110}],
SEA: [{MSP: 150}, {PDX: 98}],
SFO: [{ORD: 225}, {PDX: 125}],
STL: [{LAX: 175}, {ORD: 89}]
Representing Graphs

• The adjacency matrix would hold these weights/costs instead of binary values:

<table>
<thead>
<tr>
<th></th>
<th>ATL</th>
<th>BOS</th>
<th>LAX</th>
<th>MSP</th>
<th>ORD</th>
<th>PDX</th>
<th>PHL</th>
<th>SEA</th>
<th>SFO</th>
<th>STL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>BOS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>115</td>
<td>0</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LAX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>MSP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>ORD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>PDX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>125</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PHL</td>
<td>0</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SEA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>225</td>
<td>125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STL</td>
<td>0</td>
<td>0</td>
<td>175</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• We could also use a special value here (e.g. -1) to indicate there is no edge.
Single Source Reachability

- Question: what nodes are reachable from some specific node?
- For example, what airports are reachable from PDX?
Single Source Reachability

• Algorithm to find reachable vertices from some vertex v_i:
 1. Initialize an empty set of reachable vertices.
 2. Initialize an empty stack. Add v_i to the stack.
 3. If the stack is not empty, pop a vertex v from the stack.
 4. If v is not in the set of reachable vertices:
 • Add it to the set of reachable vertices.
 • Add each vertex that is direct successor of v to the stack.
 5. Repeat from 3.
Single Source Reachability

• Looking for airports reachable from PDX would look like this:

1. reachable: {}
 stack: [PDX]

2. v: PDX
 successors: [SEA, SFO]
 reachable: {PDX}
 stack: [SEA, SFO]

3. v: SFO
 successors: [ORD, PDX]
 reachable: {PDX, SFO}
 stack: [SEA, ORD, PDX]
Single Source Reachability

- Looking for airports reachable from PDX would look like this:

4. \(v: \text{PDX} \) (already reachable)
 successors: --
 reachable: \{PDX, SFO\}
 stack: [SEA, ORD]

5. \(v: \text{ORD} \)
 successors: [MSP, STL]
 reachable: \{ORD, PDX, SFO\}
 stack: [SEA, MSP, STL]

6. \(v: \text{STL} \)
 successors: [LAX, ORD]
 reachable: \{ORD, PDX, SFO, STL\}
 stack: [SEA, MSP, LAX, ORD]
Single Source Reachability

• Looking for airports reachable from PDX would look like this:

7. v: ORD (already reachable)
 successors: --
 reachable: \{ORD, PDX, SFO, STL\}
 stack: [SEA, MSP, LAX]

8. v: LAX
 successors: [ORD, SFO]
 reachable: \{LAX, ORD, PDX, SFO, STL\}
 stack: [SEA, MSP, ORD, SFO]

9. v: SFO, ORD (both already reachable)
 successors: --
 reachable: \{LAX, ORD, PDX, SFO, STL\}
 stack: [SEA, MSP]
Single Source Reachability

• Looking for airports reachable from PDX would look like this:

10. v: MSP
 successors: [PDX, SFO]
 reachable: {LAX, MSP, ORD, PDX, SFO, STL}
 stack: [SEA, PDX, SFO]

11. v: SFO, PDX (both already reachable)
 successors: --
 reachable: {LAX, MSP, ORD, PDX, SFO, STL}
 stack: [SEA]

12. v: SEA
 successors: MSP, PDX
 reachable: {LAX, MSP, ORD, PDX, SEA, SFO, STL}
 stack: [MSP, PDX]
Looking for airports reachable from PDX would look like this:

13. v: PDX, MSP (both already reachable)
 Successors: {}
 reachable: \{LAX, MSP, ORD, PDX, SEA, SFO, STL\}
 stack: []

14. Done (stack empty)
 reachable: \{LAX, MSP, ORD, PDX, SEA, SFO, STL\}
Single Source Reachability

• This algorithm can be implemented using either the adjacency list representation or the adjacency matrix representation.

• We could also use a queue instead of a stack.
 • Result in a different order of exploration of the graph.
Depth-first Search and Breadth-first Search

• The reachability algorithm we saw was an instance of depth-first search (or DFS).

• Recall: DFS: exploring a tree where we travel a particular path as far as we can before trying another path.
 • In other words, in DFS, the neighbors of a node’s neighbor are explored before exploring the node’s other neighbors.

• DFS can be implemented using a stack, like the reachability algorithm.
Depth-first Search and Breadth-first Search

• If we replace the stack with a queue, that results in an exploration known as **breadth-first search** (or BFS).

• Recall: BFS explores a tree by traveling all paths to a given depth, then travelling all those paths one step deeper, then travelling them one step deeper, etc.
 • In other words, in BFS, all of a node’s neighbors are explored before exploring its neighbors’ neighbors.
 • That means BFS travels all paths of length 1, then travels all paths of length 2, then travels all paths of length 3, etc.
Depth-first Search and Breadth-first Search

- General algorithm for DFS and BFS is below.
 1. Initialize an empty set of visited vertices.
 2. Initialize an empty stack (DFS) or queue (BFS). Add \(v_i \) to the stack/queue.
 3. If the stack/queue is not empty, pop/dequeue a vertex \(v \).
 4. Perform any desired processing on \(v \).
 - E.g. check if \(v \) meets a desired condition.
 5. (DFS only): If \(v \) is not in the set of visited vertices:
 - Add \(v \) to the set of visited vertices.
 - Push each vertex that is direct successor of \(v \) to the stack.
 6. (BFS only):
 - Add \(v \) to the set of visited vertices.
 - For each direct successor \(v' \) of \(v \):
 - If \(v' \) is not in the set of visited vertices, enqueue it into the queue.
 7. Repeat from 3.
Depth-first Search and Breadth-first Search

• Often, we use BFS or DFS when we are looking for a node with a particular characteristic.

• For example, both algorithms can be used to find a path from start to finish in a maze.
Depth-first Search and Breadth-first Search

Depth-First (Stack)

Breadth-First (Queue)
DFS vs. BFS

Comparisons between DFS and BFS:

- **DFS is a backtracking search**: if we’re looking for a node with a specific characteristic and DFS takes a path that doesn’t contain such a node, it will backtrack to try a different path.

- In an infinite graph, DFS can become lost down an infinite path without ever finding a solution.

- **BFS is complete and optimal**: if a solution exists in the graph, BFS is guaranteed to find it, and it will find the shortest path to that solution.

- However, BFS may take a long time to find a solution if the solution is deep in the graph.
Comparisons between DFS and BFS:

• DFS may find a deep solution more quickly.

• Both algorithms have $O(V)$ space complexity in the worst case.

• However, **BFS may take up more space in practice.**

 • If the graph has a high branching factor, i.e. if each node has many neighbors, BFS can take a lot of memory to maintain all of the paths it’s exploring on the queue.
Dijkstra’s algorithm: single source lowest-cost paths

• Dijkstra’s algorithm: finds the shortest/lowest-cost path from a specified vertex in a graph to all other reachable vertices in the graph.

• In Dijkstra’s algorithm, we will use a priority queue to order our search.
 • The priority values used in the queue correspond to the cumulative distance to each vertex added to the PQ.
 • Thus, we are always exploring the remaining node with the minimum cumulative cost.
Dijkstra’s algorithm: single source lowest-cost paths

Algorithm, which begins with some source vertex v_s:

- Initialize an empty map/hash table representing visited vertices.
 - Key is the vertex v.
 - Value is the min distance d to vertex v.
- Initialize an empty priority queue, and insert v_s into it with distance (priority) 0.
- While the priority queue is not empty:
 - Remove the first element (a vertex) from the priority queue and assign it to v. Let d be v’s distance (priority).
 - If v is not in the map of visited vertices:
 - Add v to the visited map with distance/cost d.
 - For each direct successor v_i of v:
 - Let d_i equal the cost/distance associated with edge (v, v_i).
 - Insert v_i to the priority queue with distance (priority) $d + d_i$.

Dijkstra’s algorithm: single source lowest-cost paths

• This version of the algorithm only keeps track of the minimum distance to each vertex, but it can be easily modified to keep track of the min-distance path, too.
 • Augment the visited vertex map and the priority queue to keep track of the vertex previous to each one added.

• The complexity of this version of the algorithm is $O(|E| \log |E|)$.
 • The innermost loop is executed at most $|E|$ times, and the cost of the instructions inside the loop is $O(\log |E|)$.
 • Inner cost comes from inserting into the PQ.