
CS 261-020
Data Structures

Lecture 15

Graphs

3/7/24, Thursday

1

Graph

2

• Graph – a collection of objects or states, where some pairs of those
objects are related or connected in some way.

• Graphs examples in computer science:
• Social networks like Facebook or Twitter

• Computer graphics

• Machine learning

• Computer vision

• Logistics and optimization

• Computer networking

Graph

3

• A graph is composed of vertices (or nodes or points) and edges (or arcs or
lines).

• Vertices represent objects, states (i.e. conditions or configurations),
locations, etc.
• Form a set where each vertex is unique: V = {v1, v2, v3, ... , vn}

Graph

4

• Edges represent relationships or connections between vertices.
• These are represented as vertex pairs: E = {(vi, vj), …}

• Edges can be directed or undirected.
• If there is an edge between vi and vj, then vi and vj are said to be adjacent (or they are

neighbors).

• Edges can be weighted or unweighted.

• An undirected edge is like a friend relationship in Facebook:

Graph

5

• A directed edge is like a “follows” relationship in Twitter,

• The edge is directed from Han to Chewie.

• Han is the head of this edge and that Chewie is its tail.

• Chewie is a direct successor of Han and that Han is a direct predecessor of Chewie.

• Chewie is reachable from Han.

Graph

6

• An example graph with 6 vertices and 7 undirected, unweighted edges:

Graph

7

• An example of a similar graph with directed, weighted edges:

Graph

8

• Graphs represent general relationships between objects.
• A node may have connections to any number of other nodes.

• There can be multiple paths (or no path) from one node to another.

• There can be cycles (loops) in the graph, where there is a path from one node back
to itself.

• Trees are a special, more restricted subclass of graphs.

Graph

9

• Questions we might want to ask about a graph:
• Is X in the graph?

• Is Y reachable from X?

• What nodes are reachable from X?

• Are X and Y adjacent?

• What’s the shortest path from X to Y?

• How many edges between A and Y?

Representing Graphs

10

• Two main ways to represent a graph in practice:

• An adjacency list: each vertex stores a list of its adjacent vertices.

• An adjacency matrix: a two-dimensional matrix whose rows and columns represent
vertices. If there is an edge between vi and vj, the value at location (i, j) in the
matrix will be non-zero.

Representing Graphs

11

• Consider this graph, where flights between US airports are represented, as
an example:

Representing Graphs

12

• As an adjacency list, this graph would look like this:
ATL: [ORD, PHL, STL],

BOS: [ORD, PHL],

LAX: [ORD, SFO, STL],

MSP: [ORD, PDX, SEA, SFO],

ORD: [ATL, BOS, LAX, MSP, PHL, SFO, STL],

PDX: [MSP, SEA, SFO],

PHL: [ATL, BOS, ORD],

SEA: [MSP, PDX],

SFO: [LAX, MSP, ORD, PDX],

STL: [ATL, LAX, ORD]

Representing Graphs

13

• As an adjacency matrix, the graph would look like this:

• Note that this matrix is symmetric.

Representing Graphs

14

• What is the space complexity of each of these representations?
• Adjacency list: O(|V| + |E|)

• Adjacency matrix: O(|V|2)

• Thus, the adjacency list is more space efficient when the graph is sparse,
i.e. when it has relatively few edges.

Representing Graphs

15

• What if our graph is a directed graph, e.g. if we have a flight from airport A
to airport B but not a return flight?

• Each of these representations can still be used. For example, say we have
this graph:

Representing Graphs

16

• The adjacency list:

ATL: [ORD, PHL, STL],

BOS: [ORD, PHL],

LAX: [ORD, SFO],

MSP: [PDX, SFO],

ORD: [MSP, STL],

PDX: [SEA, SFO],

PHL: [BOS, ORD],

SEA: [MSP, PDX],

SFO: [ORD, PDX],

STL: [LAX, ORD]

Representing Graphs

17

• The adjacency matrix for this graph:

• Note that this matrix is no longer symmetric.

Representing Graphs

18

• Adding weights to the graph. Say our graph contains the costs of flights
between cities:

Representing Graphs

19

• The adjacency list would store the weights/costs along with the edges:

ATL: [{ORD: 180}, {PHL: 250}, {STL: 160}],

BOS: [{ORD: 115}, {PHL: 69}],

LAX: [{ORD: 250}, {SFO: 75}],

MSP: [{PDX: 175}, {SFO: 200}],

ORD: [{MSP: 125}, {STL: 89}],

PDX: [{SEA: 98}, {SFO: 125}],

PHL: [{BOS: 69}, {ORD: 110}],

SEA: [{MSP: 150}, {PDX: 98}],

SFO: [{ORD: 225}, {PDX: 125}],

STL: [{LAX: 175}, {ORD: 89}]

Representing Graphs

20

• The adjacency matrix would hold these weights/costs instead of binary values:

• We could also use a special value here (e.g. -1) to indicate there is no edge.

Single Source Reachability

21

• Question: what nodes are reachable from some specific node?

• For example, what airports are reachable from PDX?

Single Source Reachability

22

• Algorithm to find reachable vertices from some vertex vi:
1. Initialize an empty set of reachable vertices.

2. Initialize an empty stack. Add vi to the stack.

3. If the stack is not empty, pop a vertex v from the stack.

4. If v is not in the set of reachable vertices:
• Add it to the set of reachable vertices.

• Add each vertex that is direct successor of v to the stack.

5. Repeat from 3.

Single Source Reachability

23

• Looking for airports reachable from PDX would look like this:

1.reachable: {}

stack: [PDX]

2.v: PDX

successors: [SEA, SFO]

reachable: {PDX}

stack: [SEA, SFO]

3.v: SFO

successors: [ORD, PDX]

reachable: {PDX, SFO}

stack: [SEA, ORD, PDX]

Single Source Reachability

24

• Looking for airports reachable from PDX would look like this:

4. v: PDX (already reachable)

 successors: --

 reachable: {PDX, SFO}

 stack: [SEA, ORD]

5. v: ORD

 successors: [MSP, STL]

 reachable: {ORD, PDX, SFO}

 stack: [SEA, MSP, STL]

6. v: STL

 successors: [LAX, ORD]

 reachable: {ORD, PDX, SFO, STL}

 stack: [SEA, MSP, LAX, ORD]

Single Source Reachability

25

• Looking for airports reachable from PDX would look like this:

7. v: ORD (already reachable)

 successors: --

 reachable: {ORD, PDX, SFO, STL}

 stack: [SEA, MSP, LAX]

8. v: LAX

 successors: [ORD, SFO]

 reachable: {LAX, ORD, PDX, SFO, STL}

 stack: [SEA, MSP, ORD, SFO]

9. v: SFO, ORD (both already reachable)

 successors: --

 reachable: {LAX, ORD, PDX, SFO, STL}

 stack: [SEA, MSP]

Single Source Reachability

26

• Looking for airports reachable from PDX would look like this:

10. v: MSP

 successors: [PDX, SFO]

 reachable: {LAX, MSP, ORD, PDX, SFO, STL}

 stack: [SEA, PDX, SFO]

11. v: SFO, PDX (both already reachable)

 successors: --

 reachable: {LAX, MSP, ORD, PDX, SFO, STL}

 stack: [SEA]

12. v: SEA

 successors: MSP, PDX

 reachable: {LAX, MSP, ORD, PDX, SEA, SFO, STL}

 stack: [MSP, PDX]

Single Source Reachability

27

• Looking for airports reachable from PDX would look like this:

13. v: PDX, MSP (both already reachable)

 Successors: --

 reachable: {LAX, MSP, ORD, PDX, SEA, SFO, STL}

 stack: []

14. Done (stack empty)

 reachable: {LAX, MSP, ORD, PDX, SEA, SFO, STL}

Single Source Reachability

28

• This algorithm can be implemented using either the adjacency list
representation or the adjacency matrix representation.

• We could also use a queue instead of a stack.
• Result in a different order of exploration of the graph.

Depth-first Search and Breadth-first Search

29

• The reachability algorithm we saw was an instance of depth-first search
(or DFS).

• Recall: DFS: exploring a tree where we travel a particular path as far as we
can before trying another path.
• In other words, in DFS, the neighbors of a node’s neighbor are explored before

exploring the node’s other neighbors.

• DFS can be implemented using a stack, like the reachability algorithm.

Depth-first Search and Breadth-first Search

30

• If we replace the stack with a queue, that results in an exploration known
as breadth-first search (or BFS).

• Recall: BFS explores a tree by traveling all paths to a given depth, then
travelling all those paths one step deeper, then travelling them one step
deeper, etc.
• In other words, in BFS, all of a node’s neighbors are explored before exploring its

neighbors’ neighbors.

• That means BFS travels all paths of length 1, then travels all paths of length 2, then
travels all paths of length 3, etc.

Depth-first Search and Breadth-first Search

31

• General algorithm for DFS and BFS is below.
1. Initialize an empty set of visited vertices.

2. Initialize an empty stack (DFS) or queue (BFS). Add vi to the stack/queue.

3. If the stack/queue is not empty, pop/dequeue a vertex v.

4. Perform any desired processing on v.
• E.g. check if v meets a desired condition.

5. (DFS only): If v is not in the set of visited vertices:
• Add v to the set of visited vertices.

• Push each vertex that is direct successor of v to the stack.

6. (BFS only):
• Add v to the set of visited vertices.

• For each direct successor v’ of v:
• If v’ is not in the set of visited vertices, enqueue it into the queue

7. Repeat from 3.

Depth-first Search and Breadth-first Search

32

• Often, we use BFS or DFS when we are looking for a node with a particular
characteristic.

• For example, both algorithms can be used to find a path from start to
finish in a maze.

Depth-first Search and Breadth-first Search

33

DFS vs. BFS

34

Comparisons between DFS and BFS:

• DFS is a backtracking search: if we’re looking for a node with a specific
characteristic and DFS takes a path that doesn’t contain such a node, it will
backtrack to try a different path.

• In an infinite graph, DFS can become lost down an infinite path without
ever finding a solution.

• BFS is complete and optimal: if a solution exists in the graph, BFS is
guaranteed to find it, and it will find the shortest path to that solution.

• However, BFS may take a long time to find a solution if the solution is deep
in the graph.

DFS vs. BFS (cont.)

35

Comparisons between DFS and BFS:

• DFS may find a deep solution more quickly.

• Both algorithms have O(V) space complexity in the worst case.

• However, BFS may take up more space in practice.
• If the graph has a high branching factor, i.e. if each node has many neighbors, BFS

can take a lot of memory to maintain all of the paths it’s exploring on the queue.

Dijkstra’s algorithm: single source lowest-cost paths

36

• Dijkstra’s algorithm: finds the shortest/lowest-cost path from a specified
vertex in a graph to all other reachable vertices in the graph.

• In Dijkstra’s algorithm, we will use a priority queue to order our search.
• The priority values used in the queue correspond to the cumulative distance to

each vertex added to the PQ.

• Thus, we are always exploring the remaining node with the minimum cumulative
cost.

Dijkstra’s algorithm: single source lowest-cost paths

37

Algorithm, which begins with some source vertex vs:

• Initialize an empty map/hash table representing visited vertices.
• Key is the vertex v.

• Value is the min distance d to vertex v.

• Initialize an empty priority queue, and insert vs into it with distance (priority) 0.

• While the priority queue is not empty:
• Remove the first element (a vertex) from the priority queue and assign it to v. Let d be

v’s distance (priority).

• If v is not in the map of visited vertices:
• Add v to the visited map with distance/cost d.

• For each direct successor vi of v:
• Let di equal the cost/distance associated with edge (v, vi).

• Insert vi to the priority queue with distance (priority) d + di.

Dijkstra’s algorithm: single source lowest-cost paths

38

• This version of the algorithm only keeps track of the minimum distance to
each vertex, but it can be easily modified to keep track of the min-distance
path, too.
• Augment the visited vertex map and the priority queue to keep track of the vertex

previous to each one added.

• The complexity of this version of the algorithm is O(|E|log |E|).
• The innermost loop is executed at most |E| times, and the cost of the instructions

inside the loop is O(log |E|).
• Inner cost comes from inserting into the PQ.

	Slide 1: CS 261-020 Data Structures
	Slide 2: Graph
	Slide 3: Graph
	Slide 4: Graph
	Slide 5: Graph
	Slide 6: Graph
	Slide 7: Graph
	Slide 8: Graph
	Slide 9: Graph
	Slide 10: Representing Graphs
	Slide 11: Representing Graphs
	Slide 12: Representing Graphs
	Slide 13: Representing Graphs
	Slide 14: Representing Graphs
	Slide 15: Representing Graphs
	Slide 16: Representing Graphs
	Slide 17: Representing Graphs
	Slide 18: Representing Graphs
	Slide 19: Representing Graphs
	Slide 20: Representing Graphs
	Slide 21: Single Source Reachability
	Slide 22: Single Source Reachability
	Slide 23: Single Source Reachability
	Slide 24: Single Source Reachability
	Slide 25: Single Source Reachability
	Slide 26: Single Source Reachability
	Slide 27: Single Source Reachability
	Slide 28: Single Source Reachability
	Slide 29: Depth-first Search and Breadth-first Search
	Slide 30: Depth-first Search and Breadth-first Search
	Slide 31: Depth-first Search and Breadth-first Search
	Slide 32: Depth-first Search and Breadth-first Search
	Slide 33: Depth-first Search and Breadth-first Search
	Slide 34: DFS vs. BFS
	Slide 35: DFS vs. BFS (cont.)
	Slide 36: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 37: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 38: Dijkstra’s algorithm: single source lowest-cost paths

