CS 261-020
 Data Structures

Lecture 15
Graphs
3/7/24, Thursday

Graph

- Graph - a collection of objects or states, where some pairs of those objects are related or connected in some way.
- Graphs examples in computer science:
- Social networks like Facebook or Twitter
- Computer graphics
- Machine learning
- Computer vision
- Logistics and optimization
- Computer networking

Graph

- A graph is composed of vertices (or nodes or points) and edges (or arcs or lines).
- Vertices represent objects, states (i.e. conditions or configurations), locations, etc.
- Form a set where each vertex is unique: $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$

Graph

- Edges represent relationships or connections between vertices.
- These are represented as vertex pairs: $\mathrm{E}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right), \ldots\right\}$
- Edges can be directed or undirected.
- If there is an edge between v_{i} and v_{j}, then v_{i} and v_{j} are said to be adjacent (or they are neighbors).
- Edges can be weighted or unweighted.
- An undirected edge is like a friend relationship in Facebook:

Graph

- A directed edge is like a "follows" relationship in Twitter,

- The edge is directed from Han to Chewie.
- Han is the head of this edge and that Chewie is its tail.
- Chewie is a direct successor of Han and that Han is a direct predecessor of Chewie.
- Chewie is reachable from Han.

Graph

- An example graph with 6 vertices and 7 undirected, unweighted edges:

Graph

- An example of a similar graph with directed, weighted edges:

Graph

- Graphs represent general relationships between objects.
- A node may have connections to any number of other nodes.
- There can be multiple paths (or no path) from one node to another.
- There can be cycles (loops) in the graph, where there is a path from one node back to itself.
- Trees are a special, more restricted subclass of graphs.

Graph

- Questions we might want to ask about a graph:
- Is X in the graph?
- Is Y reachable from X ?
- What nodes are reachable from X ?
- Are X and Y adjacent?
- What's the shortest path from X to Y ?
- How many edges between A and Y ?

Representing Graphs

- Two main ways to represent a graph in practice:
- An adjacency list: each vertex stores a list of its adjacent vertices.
- An adjacency matrix: a two-dimensional matrix whose rows and columns represent vertices. If there is an edge between v_{i} and v_{j}, the value at location (i, j) in the matrix will be non-zero.

Representing Graphs

- Consider this graph, where flights between US airports are represented, as an example:

Representing Graphs

- As an adjacency list, this graph would look like this:

```
ATL: [ORD, PHL, STL],
BOS: [ORD, PHL],
LAX: [ORD, SFO, STL],
MSP: [ORD, PDX, SEA, SFO],
ORD: [ATL, BOS, LAX, MSP, PHL, SFO, STL],
PDX: [MSP, SEA, SFO],
PHL: [ATL, BOS, ORD],
SEA: [MSP, PDX],
SFO: [LAX, MSP, ORD, PDX],
STL: [ATL, LAX, ORD]
```


Representing Graphs

- As an adjacency matrix, the graph would look like this:

	ATL	BOS	LAX	MSP	ORD	PDX	PHL	SEA	SFO	STL
ATL	Q	0	0	0	1	0	1	0	0	1
BOS	0	0	0	0	1	0	1	0	0	0
LAX	0	0	0	0	1	0	0	0	1	1
MSP	0	0	0	0	1	1	0	1	1	0
ORD	1	1	1	1	0	0	1	0	1	1
PDX	0	0	0	1	0	0	0	1	1	0
PHL	1	1	0	0	1	0	0	0	0	0
SEA	0	0	0	1	0	1	0	0	0	0
SFO	0	0	1	1	1	1	0	0	0	0
STL	1	0	1	0	1	0	0	0	0	0

- Note that this matrix is symmetric.

Representing Graphs

- What is the space complexity of each of these representations?
- Adjacency list: O(|V| + |E|)
- Adjacency matrix: $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Thus, the adjacency list is more space efficient when the graph is sparse, i.e. when it has relatively few edges.

Representing Graphs

- What if our graph is a directed graph, e.g. if we have a flight from airport A to airport B but not a return flight?
- Each of these representations can still be used. For example, say we have this graph:

Representing Graphs

- The adjacency list:

ATL: [ORD, PHL, STL],
BOS: [ORD, PHL],
LAX: [ORD, SFO],
MSP: [PDX, SFO],
ORD: [MSP, STL],
PDX: [SEA, SFO],
PHL: [BOS, ORD],
SEA: [MSP, PDX],
SFO: [ORD, PDX],
STL: [LAX, ORD]

Representing Graphs

- The adjacency matrix for this graph:

	ATL	BOS	LAX	MSP	ORD	PDX	PHL	SEA	SFO	STL
ATL	0	0	0	0	1	0	1	0	0	1
BOS	0	0	0	0	1	0	1	0	0	0
LAX	0	0	0	0	1	0	0	0	1	0
MSP	0	0	0	0	0	1	0	0	1	0
ORD	0	0	0	1	0	0	0	0	0	1
PDX	0	0	0	0	0	0	0	1	1	0
PHL	0	1	0	0	1	0	0	0	0	0
SEA	0	0	0	1	0	1	0	0	0	0
SFO	0	0	0	0	1	1	0	0	0	0
STL	0	0	1	0	1	0	0	0	0	0

- Note that this matrix is no longer symmetric.

Representing Graphs

- Adding weights to the graph. Say our graph contains the costs of flights between cities:

Representing Graphs

- The adjacency list would store the weights/costs along with the edges:

ATL: [\{ORD: 180\}, \{PHL: 250\}, \{STL: 160\}],
BOS: [\{ORD: 115\}, \{PHL: 69\}],
LAX: [\{ORD: 250\}, \{SFO: 75\}],
MSP: [\{PDX: 175\}, \{SFO: 200\}],
ORD: [\{MSP: 125\}, \{STL: 89\}],
PDX: [\{SEA: 98\}, \{SFO: 125\}],
PHL: [\{BOS: 69\}, \{ORD: 110\}],
SEA: [\{MSP: 150\}, \{PDX: 98\}],
SFO: [\{ORD: 225\}, \{PDX: 125\}],

STL: [\{LAX: 175\}, \{ORD: 89\}] ${ }_{19}$

Representing Graphs

- The adjacency matrix would hold these weights/costs instead of binary values:

	ATL	BOS	LAX	MSP	ORD	PDX	PHL	SEA	SFO	STL
ATL	0	0	0	0	180	0	250	0	0	160
BOS	0	0	0	0	115	0	69	0	0	0
LAX	0	0	0	0	250	0	0	0	75	0
MSP	0	0	0	0	0	175	0	0	200	0
ORD	0	0	0	125	0	0	0	0	0	89
PDX	0	0	0	0	0	0	0	98	125	0
PHL	0	69	0	0	110	0	0	0	0	0
SEA	0	0	0	150	0	98	0	0	0	0
SFO	0	0	0	0	225	125	0	0	0	0
STL	0	0	175	0	89	0	0	0	0	0

- We could also use a special value here (e.g. -1) to indicate there is no edge.

Single Source Reachability

- Question: what nodes are reachable from some specific node?
- For example, what airports are reachable from PDX?

Single Source Reachability

- Algorithm to find reachable vertices from some vertex v_{i} :

1. Initialize an empty set of reachable vertices.
2. Initialize an empty stack. Add v_{i} to the stack.
3. If the stack is not empty, pop a vertex v from the stack.
4. If v is not in the set of reachable vertices:

- Add it to the set of reachable vertices.
- Add each vertex that is direct successor of v to the stack.

5. Repeat from 3.

Single Source Reachability

- Looking for airports reachable from PDX would look like this:
1.reachable: \{\}

```
stack: [PDX]
```

2.v: PDX
successors: [SEA, SFO]
reachable: \{PDX\}
stack: [SEA, SFO]
3.v: SFO
successors: [ORD, PDX]
reachable: \{PDX, SFO\}
stack: [SEA, ORD, PDX]

Single Source Reachability

- Looking for airports reachable from PDX would look like this:

4. v: PDX (already reachable)
successors: --
reachable: \{PDX, SFO\}
stack: [SEA, ORD]
5. V: ORD
successors: [MSP, STL]
reachable: \{ORD, PDX, SFO\}
stack: [SEA, MSP, STL]
6. v: STL
successors: [LAX, ORD]
reachable: \{ORD, PDX, SFO, STL\}

stack: [SEA, MSP, LAX, ORD]

Single Source Reachability

- Looking for airports reachable from PDX would look like this:

7. v: ORD (already reachable)
successors: --
reachable: \{ORD, PDX, SFO, STL\}
stack: [SEA, MSP, LAX]
8. v: LAX
successors: [ORD, SFO]
reachable: \{LAX, ORD, PDX, SFO, STL\}
stack: [SEA, MSP, ORD, SFO]
9. v: SFO, ORD (both already reachable) successors: --

reachable: \{LAX, ORD, PDX, SFO, STL\}
stack: [SEA, MSP]

Single Source Reachability

- Looking for airports reachable from PDX would look like this:

10. V: MSP
successors: [PDX, SFO]
reachable: \{LAX, MSP, ORD, PDX, SFO, STL\} stack: [SEA, PDX, SFO]
11. v: SFO, PDX (both already reachable) successors: --
reachable: \{LAX, MSP, ORD, PDX, SFO, STL\} stack: [SEA]
12. $\mathrm{v}: ~ S E A$
successors: MSP, PDX
reachable: \{LAX, MSP, ORD, PDX, SEA, SFO, STL\}
stack: [MSP, PDX]

Single Source Reachability

- Looking for airports reachable from PDX would look like this:

13. v: PDX, MSP (both already reachable) Successors: --
reachable: \{LAX, MSP, ORD, PDX, SEA, SFO, STL\}
stack: []
14. Done (stack empty)
reachable: \{LAX, MSP, ORD, PDX, SEA, SFO, STL\}

Single Source Reachability

- This algorithm can be implemented using either the adjacency list representation or the adjacency matrix representation.
- We could also use a queue instead of a stack.
- Result in a different order of exploration of the graph.

Depth-first Search and Breadth-first Search

- The reachability algorithm we saw was an instance of depth-first search (or DFS).
- Recall: DFS: exploring a tree where we travel a particular path as far as we can before trying another path.
- In other words, in DFS, the neighbors of a node's neighbor are explored before exploring the node's other neighbors.
- DFS can be implemented using a stack, like the reachability algorithm.

Depth-first Search and Breadth-first Search

- If we replace the stack with a queue, that results in an exploration known as breadth-first search (or BFS).
- Recall: BFS explores a tree by traveling all paths to a given depth, then travelling all those paths one step deeper, then travelling them one step deeper, etc.
- In other words, in BFS, all of a node's neighbors are explored before exploring its neighbors' neighbors.
- That means BFS travels all paths of length 1 , then travels all paths of length 2 , then travels all paths of length 3 , etc.

Depth-first Search and Breadth-first Search

- General algorithm for DFS and BFS is below.

1. Initialize an empty set of visited vertices.
2. Initialize an empty stack (DFS) or queue (BFS). Add v_{i} to the stack/queue.
3. If the stack/queue is not empty, pop/dequeue a vertex v.
4. Perform any desired processing on v.

- E.g. check if v meets a desired condition.

5. (DFS only): If v is not in the set of visited vertices:

- Add v to the set of visited vertices.
- Push each vertex that is direct successor of v to the stack.

6. (BFS only):

- Add v to the set of visited vertices.
- For each direct successor v^{\prime} of v :
- If v^{\prime} is not in the set of visited vertices, enqueue it into the queue

7. Repeat from 3.

Depth-first Search and Breadth-first Search

- Often, we use BFS or DFS when we are looking for a node with a particular characteristic.
- For example, both algorithms can be used to find a path from start to finish in a maze.

Depth-first Search and Breadth-first Search

Depth-First (Stack)

25	19	14	10	8
24	22	18	13	5
23	20	15	6	3
21	16	11	4	2
17	12	9	7	1

Breadth-First (Queue)

DFS vs. BFS

Comparisons between DFS and BFS:

- DFS is a backtracking search: if we're looking for a node with a specific characteristic and DFS takes a path that doesn't contain such a node, it will backtrack to try a different path.
- In an infinite graph, DFS can become lost down an infinite path without ever finding a solution.
- BFS is complete and optimal: if a solution exists in the graph, BFS is guaranteed to find it, and it will find the shortest path to that solution.
- However, BFS may take a long time to find a solution if the solution is deep in the graph.

DFS vs. BFS (cont.)

Comparisons between DFS and BFS:

- DFS may find a deep solution more quickly.
- Both algorithms have $\mathrm{O}(\mathrm{V})$ space complexity in the worst case.
- However, BFS may take up more space in practice.
- If the graph has a high branching factor, i.e. if each node has many neighbors, BFS can take a lot of memory to maintain all of the paths it's exploring on the queue.

Dijkstra's algorithm: single source lowest-cost paths

- Dijkstra's algorithm: finds the shortest/lowest-cost path from a specified vertex in a graph to all other reachable vertices in the graph.
- In Dijkstra's algorithm, we will use a priority queue to order our search.
- The priority values used in the queue correspond to the cumulative distance to each vertex added to the PQ.
- Thus, we are always exploring the remaining node with the minimum cumulative cost.

Dijkstra's algorithm: single source lowest-cost paths

 Algorithm, which begins with some source vertex v_{s} :- Initialize an empty map/hash table representing visited vertices.
- Key is the vertex \mathbf{v}.
- Value is the min distance d to vertex v.
- Initialize an empty priority queue, and insert v_{s} into it with distance (priority) 0.
- While the priority queue is not empty:
- Remove the first element (a vertex) from the priority queue and assign it to v. Let d be v's distance (priority).
- If v is not in the map of visited vertices:
- Add v to the visited map with distance/cost d.
- For each direct successor v_{i} of v :
- Let d_{i} equal the cost/distance associated with edge ($\mathrm{v}, \mathrm{v}_{\mathrm{i}}$).
- Insert v_{i} to the priority queue with distance (priority) $d+d_{i}$.

Dijkstra's algorithm: single source lowest-cost paths

- This version of the algorithm only keeps track of the minimum distance to each vertex, but it can be easily modified to keep track of the min-distance path, too.
- Augment the visited vertex map and the priority queue to keep track of the vertex previous to each one added.
- The complexity of this version of the algorithm is $\mathrm{O}(|\mathrm{E}| \log |E|)$.
- The innermost loop is executed at most |E| times, and the cost of the instructions inside the loop is $O(\log |E|)$.
- Inner cost comes from inserting into the PQ.

