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• Graph – a collection of objects or states, where some pairs of those 
objects are related or connected in some way.

• Graphs examples in computer science:
• Social networks like Facebook or Twitter

• Computer graphics

• Machine learning

• Computer vision

• Logistics and optimization

• Computer networking
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• A graph is composed of vertices (or nodes or points) and edges (or arcs or 
lines).

• Vertices represent objects, states (i.e. conditions or configurations), 
locations, etc.
• Form a set where each vertex is unique: V = {v1, v2, v3, ... , vn}
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• Edges represent relationships or connections between vertices.
• These are represented as vertex pairs: E = {(vi, vj), …}

• Edges can be directed or undirected.
• If there is an edge between vi and vj, then vi and vj are said to be adjacent (or they are 

neighbors).

• Edges can be weighted or unweighted.

• An undirected edge is like a friend relationship in Facebook: 
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• A directed edge is like a “follows” relationship in Twitter, 

• The edge is directed from Han to Chewie.

• Han is the head of this edge and that Chewie is its tail.

• Chewie is a direct successor of Han and that Han is a direct predecessor of Chewie.

• Chewie is reachable from Han.
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• An example graph with 6 vertices and 7 undirected, unweighted edges:
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• An example of a similar graph with directed, weighted edges:
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• Graphs represent general relationships between objects.
• A node may have connections to any number of other nodes.

• There can be multiple paths (or no path) from one node to another.

• There can be cycles (loops) in the graph, where there is a path from one node back 
to itself.

• Trees are a special, more restricted subclass of graphs.
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• Questions we might want to ask about a graph:
• Is X in the graph?

• Is Y reachable from X?

• What nodes are reachable from X?

• Are X and Y adjacent?

• What’s the shortest path from X to Y?

• How many edges between A and Y?



Representing Graphs

10

• Two main ways to represent a graph in practice:

• An adjacency list: each vertex stores a list of its adjacent vertices.

• An adjacency matrix: a two-dimensional matrix whose rows and columns represent 
vertices.  If there is an edge between vi and vj, the value at location (i, j) in the 
matrix will be non-zero.
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• Consider this graph, where flights between US airports are represented, as 
an example:
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• As an adjacency list, this graph would look like this:
ATL: [ORD, PHL, STL],

BOS: [ORD, PHL],

LAX: [ORD, SFO, STL],

MSP: [ORD, PDX, SEA, SFO],

ORD: [ATL, BOS, LAX, MSP, PHL, SFO, STL],

PDX: [MSP, SEA, SFO],

PHL: [ATL, BOS, ORD],

SEA: [MSP, PDX],

SFO: [LAX, MSP, ORD, PDX],

STL: [ATL, LAX, ORD]
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• As an adjacency matrix, the graph would look like this:

• Note that this matrix is symmetric.
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• What is the space complexity of each of these representations?
• Adjacency list: O(|V| + |E|)

• Adjacency matrix: O(|V|2)

• Thus, the adjacency list is more space efficient when the graph is sparse, 
i.e. when it has relatively few edges.
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• What if our graph is a directed graph, e.g. if we have a flight from airport A 
to airport B but not a return flight?

• Each of these representations can still be used.  For example, say we have 
this graph:
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• The adjacency list:

ATL: [ORD, PHL, STL],

BOS: [ORD, PHL],

LAX: [ORD, SFO],

MSP: [PDX, SFO],

ORD: [MSP, STL],

PDX: [SEA, SFO],

PHL: [BOS, ORD],

SEA: [MSP, PDX],

SFO: [ORD, PDX],

STL: [LAX, ORD]
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• The adjacency matrix for this graph:

• Note that this matrix is no longer symmetric.
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• Adding weights to the graph. Say our graph contains the costs of flights 
between cities:
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• The adjacency list would store the weights/costs along with the edges:

ATL: [{ORD: 180}, {PHL: 250}, {STL: 160}],

BOS: [{ORD: 115}, {PHL: 69}],

LAX: [{ORD: 250}, {SFO: 75}],

MSP: [{PDX: 175}, {SFO: 200}],

ORD: [{MSP: 125}, {STL: 89}],

PDX: [{SEA: 98}, {SFO: 125}],

PHL: [{BOS: 69}, {ORD: 110}],

SEA: [{MSP: 150}, {PDX: 98}],

SFO: [{ORD: 225}, {PDX: 125}],

STL: [{LAX: 175}, {ORD: 89}]
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• The adjacency matrix would hold these weights/costs instead of binary values:

• We could also use a special value here (e.g. -1) to indicate there is no edge.
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• Question: what nodes are reachable from some specific node?

• For example, what airports are reachable from PDX?
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• Algorithm to find reachable vertices from some vertex vi:
1. Initialize an empty set of reachable vertices.

2. Initialize an empty stack.  Add vi to the stack.

3. If the stack is not empty, pop a vertex v from the stack.

4. If v is not in the set of reachable vertices:
• Add it to the set of reachable vertices.

• Add each vertex that is direct successor of v to the stack.

5. Repeat from 3.
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• Looking for airports reachable from PDX would look like this:

1.reachable: {}

stack: [PDX]

2.v: PDX

successors: [SEA, SFO]

reachable: {PDX}

stack: [SEA, SFO]

3.v: SFO

successors: [ORD, PDX]

reachable: {PDX, SFO}

stack: [SEA, ORD, PDX]
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• Looking for airports reachable from PDX would look like this:

4. v: PDX (already reachable)

   successors: --

   reachable: {PDX, SFO}

   stack: [SEA, ORD]

5. v: ORD

   successors: [MSP, STL]

   reachable: {ORD, PDX, SFO}

   stack: [SEA, MSP, STL]

6. v: STL

   successors: [LAX, ORD]

   reachable: {ORD, PDX, SFO, STL}

   stack: [SEA, MSP, LAX, ORD]
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• Looking for airports reachable from PDX would look like this:

7. v: ORD (already reachable)

   successors: --

   reachable: {ORD, PDX, SFO, STL}

   stack: [SEA, MSP, LAX]

8. v: LAX

   successors: [ORD, SFO]

   reachable: {LAX, ORD, PDX, SFO, STL}

   stack: [SEA, MSP, ORD, SFO]

9. v: SFO, ORD (both already reachable)

   successors: --

   reachable: {LAX, ORD, PDX, SFO, STL}

   stack: [SEA, MSP]
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• Looking for airports reachable from PDX would look like this:

10. v: MSP

    successors: [PDX, SFO]

    reachable: {LAX, MSP, ORD, PDX, SFO, STL}

    stack: [SEA, PDX, SFO]

11. v: SFO, PDX (both already reachable)

    successors: --

    reachable: {LAX, MSP, ORD, PDX, SFO, STL}

    stack: [SEA]

12. v: SEA

    successors: MSP, PDX

    reachable: {LAX, MSP, ORD, PDX, SEA, SFO, STL}

    stack: [MSP, PDX]
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• Looking for airports reachable from PDX would look like this:

13. v: PDX, MSP (both already reachable)

    Successors: --

    reachable: {LAX, MSP, ORD, PDX, SEA, SFO, STL}

    stack: []

14. Done (stack empty)

    reachable: {LAX, MSP, ORD, PDX, SEA, SFO, STL}
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• This algorithm can be implemented using either the adjacency list 
representation or the adjacency matrix representation.

• We could also use a queue instead of a stack. 
• Result in a different order of exploration of the graph.  
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• The reachability algorithm we saw was an instance of depth-first search 
(or DFS).

• Recall: DFS: exploring a tree where we travel a particular path as far as we 
can before trying another path.
• In other words, in DFS, the neighbors of a node’s neighbor are explored before 

exploring the node’s other neighbors.

• DFS can be implemented using a stack, like the reachability algorithm.
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• If we replace the stack with a queue, that results in an exploration known 
as breadth-first search (or BFS).

• Recall: BFS explores a tree by traveling all paths to a given depth, then 
travelling all those paths one step deeper, then travelling them one step 
deeper, etc.
• In other words, in BFS, all of a node’s neighbors are explored before exploring its 

neighbors’ neighbors.

• That means BFS travels all paths of length 1, then travels all paths of length 2, then 
travels all paths of length 3, etc.
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• General algorithm for DFS and BFS is below.  
1. Initialize an empty set of visited vertices.

2. Initialize an empty stack (DFS) or queue (BFS).  Add vi to the stack/queue.

3. If the stack/queue is not empty, pop/dequeue a vertex v.

4. Perform any desired processing on v.
• E.g. check if v meets a desired condition.

5. (DFS only): If v is not in the set of visited vertices:
• Add v to the set of visited vertices.

• Push each vertex that is direct successor of v to the stack.

6. (BFS only):
• Add v to the set of visited vertices.

• For each direct successor v’ of v:
• If v’ is not in the set of visited vertices, enqueue it into the queue

7. Repeat from 3.
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• Often, we use BFS or DFS when we are looking for a node with a particular 
characteristic.

• For example, both algorithms can be used to find a path from start to 
finish in a maze.
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Comparisons between DFS and BFS:

• DFS is a backtracking search: if we’re looking for a node with a specific 
characteristic and DFS takes a path that doesn’t contain such a node, it will 
backtrack to try a different path.

• In an infinite graph, DFS can become lost down an infinite path without 
ever finding a solution.

• BFS is complete and optimal: if a solution exists in the graph, BFS is 
guaranteed to find it, and it will find the shortest path to that solution.

• However, BFS may take a long time to find a solution if the solution is deep 
in the graph.
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Comparisons between DFS and BFS:

• DFS may find a deep solution more quickly.

• Both algorithms have O(V) space complexity in the worst case.

• However, BFS may take up more space in practice.
• If the graph has a high branching factor, i.e. if each node has many neighbors, BFS 

can take a lot of memory to maintain all of the paths it’s exploring on the queue.
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• Dijkstra’s algorithm: finds the shortest/lowest-cost path from a specified 
vertex in a graph to all other reachable vertices in the graph.

• In Dijkstra’s algorithm, we will use a priority queue to order our search.
• The priority values used in the queue correspond to the cumulative distance to 

each vertex added to the PQ.

• Thus, we are always exploring the remaining node with the minimum cumulative 
cost.
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Algorithm, which begins with some source vertex vs:

• Initialize an empty map/hash table representing visited vertices.
• Key is the vertex v.

• Value is the min distance d to vertex v.

• Initialize an empty priority queue, and insert vs into it with distance (priority) 0.

• While the priority queue is not empty:
• Remove the first element (a vertex) from the priority queue and assign it to v.  Let d be 

v’s distance (priority).

• If v is not in the map of visited vertices:
• Add v to the visited map with distance/cost d.

• For each direct successor vi of v:
• Let di equal the cost/distance associated with edge (v, vi).

• Insert vi to the priority queue with distance (priority) d + di.
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• This version of the algorithm only keeps track of the minimum distance to 
each vertex, but it can be easily modified to keep track of the min-distance 
path, too.
• Augment the visited vertex map and the priority queue to keep track of the vertex 

previous to each one added.

• The complexity of this version of the algorithm is O(|E|log |E|).
• The innermost loop is executed at most |E| times, and the cost of the instructions 

inside the loop is O(log |E|).
• Inner cost comes from inserting into the PQ.
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