CS 261-020
Data Structures

Lecture 16
Dijkstra’s
Final Exam Review
3/14/24, Thursday

) Oregon State

Odds and Ends

* Due Reminder:
* Quiz 5 due Sunday midnight via Canvas — open today after the lecture
e Assignment 5 due Sunday midnight via TEACH

* Tomorrow (Friday 3/15) is the last day to demo any assignments
* No late demo penalty for assignment 4
* 30% late demo penalty for assignment 1-3

Lecture Topics:

* Dijkstra’s
* Final Exam Review

Dijkstra’s algorithm: single source lowest-cost paths

* Dijkstra’s algorithm: finds the shortest/lowest-cost path from a specified
vertex in a graph to all other reachable vertices in the graph.

* In Dijkstra’s algorithm, we will use a priority queue to order our search.

* The priority values used in the queue correspond to the cumulative distance to
each vertex added to the PQ.

* Thus, we are always exploring the remaining node with the minimum cumulative
cost. i

Dijkstra’s algorithm: single source lowest-cost paths
Algorithm, which begins with some source vertex v.:

* Initialize an empty map/hash table representing visited vertices.
* Key is the vertex v.
* Value is the min distance d to vertex v.

* Initialize an empty priority queue, and insert v, into it with distance (priority) O.

* While the priority queue is not empty:

« Remove the first element (a vertex) from the priority queue and assign it to v. Let d be
v’s distance (priority).
* If vis not in the map of visited vertices:
e Add v to the visited map with distance/cost d.
* For each direct successor v, of v:

* Let d, equal the cost/distance associated with edge (v, v;).

* Insert v, to the priority queue with distance (priority) d + d..
5

Dijkstra’s algorithm: single source lowest-cost paths

* This version of the algorithm only keeps track of the minimum distance to
each vertex, but it can be easily modified to keep track of the min-distance
path, too.

* Augment the visited vertex map and the priority queue to keep track of the vertex
previous to each one added.

* The complexity of this version of the algorithm is O(|E|log |E]).

* The innermost loop is executed at most |E| times, and the cost of the instructions
inside the loop is O(log |E|).

* Inner cost comes from inserting into the PQ.

6

Lecture Topics:

 Final Exam Review

Final Exam
» 3/20 Wednesday from 2:00 — 3:20 pm

e Same classroom
* Close book, close notes
 No calculator allowed

e Question types: multiple choices, T/F, short answer
* Similar to the Midterm Exam

* Bring pencil/pen, and your photo ID (student ID/driver license/passport)
e Scratch paper will be provided upon request

Final
* Topics: Week 6-10 (lecture 9-16):

* Binary Search Trees

* Tree vs. Binary Tree

* BST Operations and their complexity:
* Finding an element
* Inserting an element
* Removing an element

* Traversal
* DFS: Pre-order vs. in-order vs. post order
* BFS: level order

Final

* Topics: Week 6-10 (lecture 9-16):

* AVL Tree

e Balance factor of a node
* Single rotation vs. double rotation
* Runtime complexity of AVL tree operations

* Priority Queues

* Array-based heap (min/max heap)

* Operations:

* Build a heap from an arbitrary array

* |nsert, remove

Percolations

* Heapsort

* Map and Hash table
* Graph

10

balanceFactor(N)

-2 (left-heavy)

2 (right-heavy)

balanceFactor(C)

=
(left-heavy)

Left-left
imbalance
Single rotation:
right around N

Right-left
imbalance
Double rotation

1. rightaround C
2. leftaround N

1
(night-heavy)

Left-right
imbalance
Double rotation:

1. leftaround C
2. rnight around N

Right-right
imbalance
Single rotation
left around N

Final

* Topics: Week 6-10 (lecture 9-16):
* Map and Hash table

 Hash functions

* HT operations and their runtime complexity:
* lookup
* Insert
* Remove
* Resolve Hash collisions
* Chaining
* Open Addressing: Tombstone
* Load factor

11

Final

* Topics: Week 6-10 (lecture 9-16):
* Graph

* Representation: adjacency list vs. adjacency matrix
» Single source reachability
 DFSvs. BFS in graph
* Single source lowest-cost paths
 Dijkstra’s Algorithm

12

Study Guide

* Review quiz questions

* Review slides

* Take practice final (and time yourself)
 Study recitation and assignments

13

Assignment 5 Q&A

Be Confident... |
-
Now you are able to... J\b

* Describe the properties, interfaces, and behaviors of basic abstract data types
* Read an algorithm or program code segment and analyze the time complexity.

 State the time complexity of the fundamental operations associated with a variety
of data structures.

* Recall the space utilization of common data structures in terms of the long-term
storage needed to maintain the structure, as well as the short-term memory
requirements of fundamental operations, such as sorting.

* Design and implement general-purpose, reusable data structures that implement
one or more abstractions.

 Compare and contrast the operation of common data structures in terms of time
complexity, space utilization, and the abstract data types they implement.

Final Remarks...

* Thank you so much for your commitment to this course

e Future improvements?
 MyOSU - Student Records 2>

* ULA position

- Select lax Year

* Tax Notification

'
Student Access to Student Evaluation of Teaching.

® View Advanced Standing Report

= - .

* Contact me! And apply through: https://jobs.oregonstate.edu/postings/140560

16

https://jobs.oregonstate.edu/postings/140560

Final Remarks...

e Submit all your work by the deadline
* Assignment 5, quiz 5

* Final exam on Wednesday, 3/20 2:00 pm @ WNGR 151
* Bring your photo ID

* Grade disputation:
* By 3/23 6pm

17

*Additional Topics

* Sets ADT and its implementation
* Git and GitHub

e *Will not be on the final

18

Set

e Set — An ADT that can store unique values, without any particular order.
* Unigue = no duplicates
* Unordered = cannot access items using index values

e Array: [1,1,2,2,3,4,1,5,8,7]
 Set: {1,2,3,4,5,8,7} < Note: no duplicates

* Why using set?
* Check if a specific element is contained in the set

19

Set Operations

* The idea of a Set has been translated directly from mathematics into
programming languages.
e Such as in Python

* Basic operations:
* contains() — search for a specific element and see if it is contained in the set
* add() —add an element into the set
* remove() — remove an element from the set

20

Set Operations

* More operations:
* union()—return the union of two sets

* Example:
* A={2,5,7}
- B={1, 2,5, 8} Union

e Then AUnionB (A UB)={1, 2,5, 8}

. |r1 F)\[tf1()r1° A ={'red', 'green’, 'blue’}
: B = {'yellow', 'red', 'orange'}
by operator
print(A | B)
Prints {'blue’, "green’, ‘yellow', ‘orange’', ‘red'}
by method

print(A.union(B))
Prints {'blue’, "green’, ‘yellow', ‘orange’', ‘red'}

21

Set Operations

* More operations:

* intersection() — return the intersection of two sets

* Example:
- A={2,5,7}
e« B={1,2,5,8) Intersection
* Then A intersects B (A n B) ={2, 5}

I=
I

{'red', 'green’, 'blue’}

* In Python: B
by operator
print(A & B)
Prints {'red’}

by method

{'yellow’', 'red', 'orange'}

print(A.intersection(B))

Prints {'red’'}
22

Set Operations

* More operations:

e difference() — return the difference of two sets
* Example:

« A={2,5,7}

« B={1,2,5, 8}

* Then Set difference of A and B (A - B) = {7}

Difference

A= {'red', 'green', 'blue’}
* In Python: °~ tyetiow. red, roranger)
by operator
print(A - B)
Prints {'blue’, 'green’;};
by method
print(A.difference(B))
Prints {'blue’, 'green’;};

23

Set Operations

* More operations:

* symmetric_difference() — return the set of all elements
in either A or B, but not both

* Example:
« A={2,5,7}
e B={1, 2,5, 8}
* Then Set difference of Aand B (A~ B) ={7, 1, 8}

>»» first set = {1, 2, 3, 4, 5, 6]
° |In Python: >>> second set = {4, 5, 6, 7, 8, 9}
>»>» first set.symmetric _difference(second set)
1, 2, 3, 7, 8, 9}
>>>
»>»>» first set ~ second set # using the "~ operator
1, 2, 3, 7, 8, 9}

24

Symmetric Difference

Set Implementation

* Multiple ways of implementing a set ADT
* Hash-based approach
* Tree-based approach

25

Set Implementation: Using a Hash Table

* The underlying data structure is a hash table
Key (element) = Hash Function = Index
e Use either chaining or open addressing to resolve collisions

26

Set Implementation: Using a Hash Table

* contains() — search for an element and see if it is contained in the set

e Similar to the lookup() in the hash table:
* Take the element (key)
* Apply the hash function, and get the index
* Access

* Complexity: O(1)

27

Set Implementation: Using a Hash Table

* add() —add an element into the set

e Similar to the insert() in the hash table:
* Take the element (key)
* Apply the hash function, and get the index

* Insert
e Resize and rehash if needed
e Resolve collision if needed

 Complexity: avg. O(1)

28

Set Implementation: Using a Hash Table

* remove() — remove an element from the set

e Similar to the remove() in the hash table:
* Take the element (key)
* Apply the hash function, and get the index

* Remove
* Add dummy node (tombstone) if needed

* Complexity: O(1)

29

Set Implementation: Using a Hash Table

* union(set A, set B) — return the union of two sets

* Procedure:
* Create an empty set, say S
 Add all elements of Ainto S
* Add all elements of Binto S
* Return S
* *Note: since hash table cannot have duplicate keys, it handles “no duplicates” rule
in Sets

* Complexity: O(size(A) + size(B))

Union

30

Set Implementation: Using a Hash Table

* intersection(set A, set B) — return the intersection of two sets

* Procedure:
* Create an empty set, say S

* Loop through each element A, in set A
* If A,isin B (by calling contains())
* Add A into S

e Return S Intersection

* Complexity: O(min(size(A), size(B)))

31

Set Implementation: Using a Hash Table

* difference(set A, set B) — return the difference of two sets
* in thiscase: A-B

* Procedure:
* Create an empty set, say S

* Loop through each element A, in set A

* If A,is NOT in B (by calling contains())
* Add A into S Difference

* Return S

* Complexity: O(size(A))

32

Set Implementation: Using a Hash Table

* symmetric_difference(set A, set B) — return the symmetric difference of
two sets

* Procedure:
* Create an empty set, say S

* Loop through each element A, in set A
* If A,is NOT in B (by calling contains())
* Add A, into S
* Loop through each element B. in set B
 If B,is NOT in A (by calling contains()) Symmetric Difference
* AddB,into S

* Return S

* Complexity: O(size(A)+size(B))

33

Set Implementation: Using a Hash Table

* Example Set Implementation in C using hash table:
* https://github.com/barrust/set

34

https://github.com/barrust/set

Set Implementation: Using a Tree

* The underlying data structure is a self-balancing tree:
* AVL Tree
* Red-black tree

35

Set Implementation: Using a Tree

* contains() — search for an element and see if it is contained in the set
* add() —add an element into the set
* remove() — remove an element from the set

 Similar to AVL tree’s loopup(), insert(), and remove()

* Complexity: O(log n) where n is the number of element;in the set

36

Set Implementation: Using a Tree

* union(set A, set B) — return the union of two sets

Union

* Procedure:
* Create an empty set S
* Insert all elements of A into S = n elements, each takes O(log n), so O(nlogn)

* For each element B, in B:
* If S contains B, skip
* Else, insert B, into S

* Return S

37

Set Implementation: Using a Tree

* intersection(set A, set B) — return the intersection of two sets

* Procedure:
* Create an empty set, say S

* Loop through each element A, in set A

* If B contains A,
* Insert A into S Intersection

* Return S

38

Set Implementation: Using a Tree

* difference(set A, set B) — return the difference of two sets
* in thiscase: A-B

* Procedure:
* Create an empty set, say S

* Loop through each element A, in set A

* If A,is NOT in B (by calling contains())
* Insert A;into S Difference

* Return S

39

Set Implementation: Using a Tree

* symmetric_difference(set A, set B) — return the symmetric difference of
two sets

* Procedure:
* Create an empty set, say S

* Loop through each element A, in set A
* If A,is NOT in B (by calling contains())
* Insert A, into S

* Loop through each element B, in set B Symmetric Dijference
e If B,is NOT in A (by calling contains())
* Insert B, into S

* Return S

40

Red-Black Tree

* Another type of self-balancing tree:

* Explore 6 YouTube videos here:

41

https://www.youtube.com/watch?v=qvZGUFHWChY&list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin&ab_channel=MichaelSambol

*Additional Topics

* Sets ADT and its implementation
* Git and GitHub

e *Will not be on the final

42

Git Overview

* Git is one of the most popular version control systems (VCS)

 AVCS is a tool (a program) for managing changes to your code and for making
it easier to work with many people on the same code.

Removed old Added new
Bug fi text text

Git Overview C(Q\u 3) TR

Feature bug

O O
* Git manages changes in code by taking a snapshot of the entire
codebase every time you tell it to
* These snapshots are stored permanently in a repository.
e Storing a snapshot in the repository is called committing your code.
* Every new commit records a new version of the code.

* Git maintains a history of all of the versions of a project ever recorded.

* You can look at (and even revert to) your code at different points in its history, and
compare the differences between different points in the history.

44

Git Overview

e Gitis a distributed VCS.

* Many computers can hold a copy of a repository.
* Any non-local Git repository is called a remote repository.

* Git has commands to synchronize copies of a repository between two
machines.

* This allows many people to work on the same piece of code easily.
* Each person makes changes and commits them to their local repository.

* Then they use Git’s synchronization commands to make sure their repositories are in
sync.
e Changes can be pushed from the local repository to a remote repository.
* Changes can also be pulled from a remote repository to the local repository

GitHub Overview

e GitHub is a web application that does several things: GitH“b

* Hosts Git repositories on the cloud.
* These typically serve as a central (master) remote repository for one or more developers.

* Provides a nice web interface for browsing code in a Git repository.

* Provides nice web-based tools to collaborate on code (centered around Git
repos).

* Provides tools to link code to external services (e.g. for building, testing, or
publishing code).

* Signup here: https://github.com/join

46

https://github.com/join

Git & GitHub

1. Create a Git repository hosted on GitHub

2. Use Git to make a copy of this repository on your development
machine using the command: git clone [url]

3. Start working in that directory as you wish
* At any point, to print a summary of the current state of your work:
git status

47

Git & GitHub

4. To commit a snapshot of your code:
* |n Git, committing is a two-step process:

1. stage (i.e. mark as ready for commit) the files you want to commit.
git add some code.cpp

2. commit the staged files.
git commit -m "A short message describing this commit”

* The —-m option allows you to provide a short message to describe your commit, so
you can get a quick sense for the commit when you look back on it later.

* If you omit the —m option, Git will open a text editor for you so you can write a
message to describe your commit.

48

Git & GitHub

5. Lastly save your work onto GitHub:
git push

* This synchronizes the remote repository on GitHub with your local repository,
pushing any new commits you’ve made into the remote repo.

49

Useful Git Commands

clone — copies an entire remote repo to the local machine
log — prints the history of all commits made to the local repo
status — prints a brief message describing the working state of the local repo

diff — prints the actual differences between different versions of the local repo

* By default, diff prints the difference between the working (i.e. current) code and the last
commit.

add — stages a file for commit
commi t — commits all the staged files

push — synchronizes all commits from your local repo to a remote repo (e.g. your
GitHub remote repo)

50

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 5: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 6: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 7: Lecture Topics:
	Slide 8: Final Exam
	Slide 9: Final
	Slide 10: Final
	Slide 11: Final
	Slide 12: Final
	Slide 13: Study Guide
	Slide 14: Assignment 5 Q&A
	Slide 15: Be Confident…
	Slide 16: Final Remarks…
	Slide 17: Final Remarks…
	Slide 18: *Additional Topics
	Slide 19: Set
	Slide 20: Set Operations
	Slide 21: Set Operations
	Slide 22: Set Operations
	Slide 23: Set Operations
	Slide 24: Set Operations
	Slide 25: Set Implementation
	Slide 26: Set Implementation: Using a Hash Table
	Slide 27: Set Implementation: Using a Hash Table
	Slide 28: Set Implementation: Using a Hash Table
	Slide 29: Set Implementation: Using a Hash Table
	Slide 30: Set Implementation: Using a Hash Table
	Slide 31: Set Implementation: Using a Hash Table
	Slide 32: Set Implementation: Using a Hash Table
	Slide 33: Set Implementation: Using a Hash Table
	Slide 34: Set Implementation: Using a Hash Table
	Slide 35: Set Implementation: Using a Tree
	Slide 36: Set Implementation: Using a Tree
	Slide 37: Set Implementation: Using a Tree
	Slide 38: Set Implementation: Using a Tree
	Slide 39: Set Implementation: Using a Tree
	Slide 40: Set Implementation: Using a Tree
	Slide 41: Red-Black Tree
	Slide 42: *Additional Topics
	Slide 43: Git Overview
	Slide 44: Git Overview
	Slide 45: Git Overview
	Slide 46: GitHub Overview
	Slide 47: Git & GitHub
	Slide 48: Git & GitHub
	Slide 49: Git & GitHub
	Slide 50: Useful Git Commands

