
CS 261-020
Data Structures

Lecture 16

Dijkstra’s

Final Exam Review

3/14/24, Thursday

1

Odds and Ends

• Due Reminder:
• Quiz 5 due Sunday midnight via Canvas – open today after the lecture

• Assignment 5 due Sunday midnight via TEACH

• Tomorrow (Friday 3/15) is the last day to demo any assignments
• No late demo penalty for assignment 4

• 30% late demo penalty for assignment 1-3

2

Lecture Topics:

• Dijkstra’s

• Final Exam Review

3

Dijkstra’s algorithm: single source lowest-cost paths

4

• Dijkstra’s algorithm: finds the shortest/lowest-cost path from a specified
vertex in a graph to all other reachable vertices in the graph.

• In Dijkstra’s algorithm, we will use a priority queue to order our search.
• The priority values used in the queue correspond to the cumulative distance to

each vertex added to the PQ.

• Thus, we are always exploring the remaining node with the minimum cumulative
cost.

Dijkstra’s algorithm: single source lowest-cost paths

5

Algorithm, which begins with some source vertex vs:

• Initialize an empty map/hash table representing visited vertices.
• Key is the vertex v.

• Value is the min distance d to vertex v.

• Initialize an empty priority queue, and insert vs into it with distance (priority) 0.

• While the priority queue is not empty:
• Remove the first element (a vertex) from the priority queue and assign it to v. Let d be

v’s distance (priority).

• If v is not in the map of visited vertices:
• Add v to the visited map with distance/cost d.

• For each direct successor vi of v:
• Let di equal the cost/distance associated with edge (v, vi).

• Insert vi to the priority queue with distance (priority) d + di.

Dijkstra’s algorithm: single source lowest-cost paths

6

• This version of the algorithm only keeps track of the minimum distance to
each vertex, but it can be easily modified to keep track of the min-distance
path, too.
• Augment the visited vertex map and the priority queue to keep track of the vertex

previous to each one added.

• The complexity of this version of the algorithm is O(|E|log |E|).
• The innermost loop is executed at most |E| times, and the cost of the instructions

inside the loop is O(log |E|).
• Inner cost comes from inserting into the PQ.

Lecture Topics:

• Final Exam Review

7

Final Exam

8

• 3/20 Wednesday from 2:00 – 3:20 pm

• Same classroom

• Close book, close notes

• No calculator allowed

• Question types: multiple choices, T/F, short answer
• Similar to the Midterm Exam

• Bring pencil/pen, and your photo ID (student ID/driver license/passport)

• Scratch paper will be provided upon request

Final

9

• Topics: Week 6-10 (lecture 9-16):
• Binary Search Trees

• Tree vs. Binary Tree

• BST Operations and their complexity:
• Finding an element

• Inserting an element

• Removing an element

• Traversal
• DFS: Pre-order vs. in-order vs. post order

• BFS: level order

Final

10

• Topics: Week 6-10 (lecture 9-16):
• AVL Tree

• Balance factor of a node

• Single rotation vs. double rotation

• Runtime complexity of AVL tree operations

• Priority Queues
• Array-based heap (min/max heap)

• Operations:
• Insert, remove

• Percolations

• Build a heap from an arbitrary array

• Heapsort

• Map and Hash table

• Graph

Final

11

• Topics: Week 6-10 (lecture 9-16):
• Map and Hash table

• Hash functions

• HT operations and their runtime complexity:
• lookup

• Insert

• Remove

• Resolve Hash collisions
• Chaining

• Open Addressing: Tombstone

• Load factor

Final

12

• Topics: Week 6-10 (lecture 9-16):
• Graph

• Representation: adjacency list vs. adjacency matrix

• Single source reachability

• DFS vs. BFS in graph

• Single source lowest-cost paths
• Dijkstra’s Algorithm

Study Guide

• Review quiz questions

• Review slides

• Take practice final (and time yourself)

• Study recitation and assignments

13

Assignment 5 Q&A

14

Be Confident…

Now you are able to…

• Describe the properties, interfaces, and behaviors of basic abstract data types

• Read an algorithm or program code segment and analyze the time complexity.

• State the time complexity of the fundamental operations associated with a variety
of data structures.

• Recall the space utilization of common data structures in terms of the long-term
storage needed to maintain the structure, as well as the short-term memory
requirements of fundamental operations, such as sorting.

• Design and implement general-purpose, reusable data structures that implement
one or more abstractions.

• Compare and contrast the operation of common data structures in terms of time
complexity, space utilization, and the abstract data types they implement.

15

Final Remarks…

• Thank you so much for your commitment to this course

• Future improvements?
• MyOSU → Student Records →

• ULA position
• Contact me! And apply through: https://jobs.oregonstate.edu/postings/140560

16

https://jobs.oregonstate.edu/postings/140560

Final Remarks…

• Submit all your work by the deadline
• Assignment 5, quiz 5

• Final exam on Wednesday, 3/20 2:00 pm @ WNGR 151
• Bring your photo ID

• Grade disputation:
• By 3/23 6pm

17

*Additional Topics

• Sets ADT and its implementation

• Git and GitHub

• *Will not be on the final

18

Set

19

• Set – An ADT that can store unique values, without any particular order.

• Unique → no duplicates

• Unordered → cannot access items using index values

• Array: [1,1,2,2,3,4,1,5,8,7]

• Set: {1,2,3,4,5,8,7}  Note: no duplicates

• Why using set?
• Check if a specific element is contained in the set

Set Operations

20

• The idea of a Set has been translated directly from mathematics into
programming languages.
• Such as in Python

• Basic operations:
• contains() – search for a specific element and see if it is contained in the set

• add() – add an element into the set

• remove() – remove an element from the set

Set Operations

21

• More operations:
• union() – return the union of two sets

• Example:
• A = {2, 5, 7}

• B = {1, 2, 5, 8}

• Then A Union B (A U B) = {1, 2, 5, 8}

• In Python:

Set Operations

22

• More operations:
• intersection() – return the intersection of two sets

• Example:
• A = {2, 5, 7}

• B = {1, 2, 5, 8}

• Then A intersects B (A ∩ B) = {2, 5}

• In Python:

Set Operations

23

• More operations:
• difference() – return the difference of two sets

• Example:
• A = {2, 5, 7}

• B = {1, 2, 5, 8}

• Then Set difference of A and B (A - B) = {7}

• In Python:

Set Operations

24

• More operations:
• symmetric_difference() – return the set of all elements

in either A or B, but not both

• Example:
• A = {2, 5, 7}

• B = {1, 2, 5, 8}

• Then Set difference of A and B (A ^ B) = {7, 1, 8}

• In Python:

Set Implementation

25

• Multiple ways of implementing a set ADT
• Hash-based approach

• Tree-based approach

Set Implementation: Using a Hash Table

26

• The underlying data structure is a hash table

 Key (element) → Hash Function → Index

• Use either chaining or open addressing to resolve collisions

Set Implementation: Using a Hash Table

27

• contains() – search for an element and see if it is contained in the set

• Similar to the lookup() in the hash table:
• Take the element (key)

• Apply the hash function, and get the index

• Access

• Complexity: O(1)

Set Implementation: Using a Hash Table

28

• add() – add an element into the set

• Similar to the insert() in the hash table:
• Take the element (key)

• Apply the hash function, and get the index

• Insert
• Resize and rehash if needed

• Resolve collision if needed

• Complexity: avg. O(1)

Set Implementation: Using a Hash Table

29

• remove() – remove an element from the set

• Similar to the remove() in the hash table:
• Take the element (key)

• Apply the hash function, and get the index

• Remove
• Add dummy node (tombstone) if needed

• Complexity: O(1)

Set Implementation: Using a Hash Table

30

• union(set A, set B) – return the union of two sets

• Procedure:
• Create an empty set, say S

• Add all elements of A into S

• Add all elements of B into S

• Return S

• *Note: since hash table cannot have duplicate keys, it handles “no duplicates” rule
in Sets

• Complexity: O(size(A) + size(B))

Set Implementation: Using a Hash Table

31

• intersection(set A, set B) – return the intersection of two sets

• Procedure:
• Create an empty set, say S

• Loop through each element Ai in set A
• If Ai is in B (by calling contains())

• Add Ai into S

• Return S

• Complexity: O(min(size(A), size(B)))

Set Implementation: Using a Hash Table

32

• difference(set A, set B) – return the difference of two sets
• in this case: A - B

• Procedure:
• Create an empty set, say S

• Loop through each element Ai in set A
• If Ai is NOT in B (by calling contains())

• Add Ai into S

• Return S

• Complexity: O(size(A))

Set Implementation: Using a Hash Table

33

• symmetric_difference(set A, set B) – return the symmetric difference of
two sets

• Procedure:
• Create an empty set, say S
• Loop through each element Ai in set A

• If Ai is NOT in B (by calling contains())
• Add Ai into S

• Loop through each element Bi in set B
• If Bi is NOT in A (by calling contains())
• Add Bi into S

• Return S

• Complexity: O(size(A)+size(B))

Set Implementation: Using a Hash Table

34

• Example Set Implementation in C using hash table:

• https://github.com/barrust/set

https://github.com/barrust/set

Set Implementation: Using a Tree

35

• The underlying data structure is a self-balancing tree:
• AVL Tree

• Red-black tree

Set Implementation: Using a Tree

36

• contains() – search for an element and see if it is contained in the set

• add() – add an element into the set

• remove() – remove an element from the set

• Similar to AVL tree’s loopup(), insert(), and remove()

• Complexity: O(log n) where n is the number of element in the set

Set Implementation: Using a Tree

37

• union(set A, set B) – return the union of two sets

• Procedure:
• Create an empty set S

• Insert all elements of A into S → n elements, each takes O(log n), so O(nlogn)

• For each element Bi in B:
• If S contains Bi, skip

• Else, insert Bi into S

• Return S

Set Implementation: Using a Tree

38

• intersection(set A, set B) – return the intersection of two sets

• Procedure:
• Create an empty set, say S

• Loop through each element Ai in set A
• If B contains Ai

• Insert Ai into S

• Return S

Set Implementation: Using a Tree

39

• difference(set A, set B) – return the difference of two sets
• in this case: A - B

• Procedure:
• Create an empty set, say S

• Loop through each element Ai in set A
• If Ai is NOT in B (by calling contains())

• Insert Ai into S

• Return S

Set Implementation: Using a Tree

40

• symmetric_difference(set A, set B) – return the symmetric difference of
two sets

• Procedure:
• Create an empty set, say S

• Loop through each element Ai in set A
• If Ai is NOT in B (by calling contains())

• Insert Ai into S

• Loop through each element Bi in set B
• If Bi is NOT in A (by calling contains())

• Insert Bi into S

• Return S

Red-Black Tree

• Another type of self-balancing tree:

• Explore 6 YouTube videos here:

41

https://www.youtube.com/watch?v=qvZGUFHWChY&list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin&ab_channel=MichaelSambol

*Additional Topics

• Sets ADT and its implementation

• Git and GitHub

• *Will not be on the final

42

Git Overview

• Git is one of the most popular version control systems (VCS)
• A VCS is a tool (a program) for managing changes to your code and for making

it easier to work with many people on the same code.

43

Git Overview

• Git manages changes in code by taking a snapshot of the entire
codebase every time you tell it to
• These snapshots are stored permanently in a repository.

• Storing a snapshot in the repository is called committing your code.

• Every new commit records a new version of the code.

• Git maintains a history of all of the versions of a project ever recorded.
• You can look at (and even revert to) your code at different points in its history, and

compare the differences between different points in the history.

44

Git Overview

• Git is a distributed VCS.
• Many computers can hold a copy of a repository.

• Any non-local Git repository is called a remote repository.

• Git has commands to synchronize copies of a repository between two
machines.

• This allows many people to work on the same piece of code easily.
• Each person makes changes and commits them to their local repository.

• Then they use Git’s synchronization commands to make sure their repositories are in
sync.
• Changes can be pushed from the local repository to a remote repository.

• Changes can also be pulled from a remote repository to the local repository

45

GitHub Overview

• GitHub is a web application that does several things:
• Hosts Git repositories on the cloud.

• These typically serve as a central (master) remote repository for one or more developers.

• Provides a nice web interface for browsing code in a Git repository.

• Provides nice web-based tools to collaborate on code (centered around Git
repos).

• Provides tools to link code to external services (e.g. for building, testing, or
publishing code).

• Signup here: https://github.com/join

46

https://github.com/join

Git & GitHub

1. Create a Git repository hosted on GitHub

2. Use Git to make a copy of this repository on your development
machine using the command: git clone [url]

3. Start working in that directory as you wish
• At any point, to print a summary of the current state of your work:

 git status

47

Git & GitHub

4. To commit a snapshot of your code:
• In Git, committing is a two-step process:
1. stage (i.e. mark as ready for commit) the files you want to commit.
git add some_code.cpp

2. commit the staged files.
git commit -m "A short message describing this commit”

• The -m option allows you to provide a short message to describe your commit, so
you can get a quick sense for the commit when you look back on it later.

• If you omit the -m option, Git will open a text editor for you so you can write a
message to describe your commit.

48

Git & GitHub

5. Lastly save your work onto GitHub:

 git push

• This synchronizes the remote repository on GitHub with your local repository,
pushing any new commits you’ve made into the remote repo.

49

Useful Git Commands

• clone – copies an entire remote repo to the local machine

• log – prints the history of all commits made to the local repo

• status – prints a brief message describing the working state of the local repo

• diff – prints the actual differences between different versions of the local repo
• By default, diff prints the difference between the working (i.e. current) code and the last

commit.

• add – stages a file for commit

• commit – commits all the staged files

• push – synchronizes all commits from your local repo to a remote repo (e.g. your
GitHub remote repo)

50

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 5: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 6: Dijkstra’s algorithm: single source lowest-cost paths
	Slide 7: Lecture Topics:
	Slide 8: Final Exam
	Slide 9: Final
	Slide 10: Final
	Slide 11: Final
	Slide 12: Final
	Slide 13: Study Guide
	Slide 14: Assignment 5 Q&A
	Slide 15: Be Confident…
	Slide 16: Final Remarks…
	Slide 17: Final Remarks…
	Slide 18: *Additional Topics
	Slide 19: Set
	Slide 20: Set Operations
	Slide 21: Set Operations
	Slide 22: Set Operations
	Slide 23: Set Operations
	Slide 24: Set Operations
	Slide 25: Set Implementation
	Slide 26: Set Implementation: Using a Hash Table
	Slide 27: Set Implementation: Using a Hash Table
	Slide 28: Set Implementation: Using a Hash Table
	Slide 29: Set Implementation: Using a Hash Table
	Slide 30: Set Implementation: Using a Hash Table
	Slide 31: Set Implementation: Using a Hash Table
	Slide 32: Set Implementation: Using a Hash Table
	Slide 33: Set Implementation: Using a Hash Table
	Slide 34: Set Implementation: Using a Hash Table
	Slide 35: Set Implementation: Using a Tree
	Slide 36: Set Implementation: Using a Tree
	Slide 37: Set Implementation: Using a Tree
	Slide 38: Set Implementation: Using a Tree
	Slide 39: Set Implementation: Using a Tree
	Slide 40: Set Implementation: Using a Tree
	Slide 41: Red-Black Tree
	Slide 42: *Additional Topics
	Slide 43: Git Overview
	Slide 44: Git Overview
	Slide 45: Git Overview
	Slide 46: GitHub Overview
	Slide 47: Git & GitHub
	Slide 48: Git & GitHub
	Slide 49: Git & GitHub
	Slide 50: Useful Git Commands

