
CS 261-020
Data Structures

Lecture 2

C Basics

1/11/24, Thursday

1

Odds and Ends

• Due 1/14 Sunday 11:59pm: Quiz 1

• Assignment 1 is posted

2

Lecture Topics:

• C Basics

3

C Basics – printf()

• How to print the content of a variable?
• Passing a format string and accompanying arguments to printf()

• Format string: a template for the text to be printed. Contains format specifiers into which
specific value will later be inserted

• Format specifier: start with a %, followed by a character describing the data

• E.g.:

int x = 8;

printf("This is the value of x: %d\n", x);

4

C Basics – scanf()

• How to accept input from standard input (keyboard)?
• In C++, we use cin

• i.e., cin >> var;

• In C, we use scanf()
• i.e., scanf(“%d”, &var);

• To read in more than one value, use multiple format specifiers
• i.e.,

printf(“Enter two integers: \n”);

scanf(“%d %d”, &var1, &var2);

5

C Basics – Functions (cont.)

• Unlike C++, C has no reference types!

• Can only pass by value (or by pointers)

6

#include <stdio.h>

void foo(int *x) {

printf("foo was passed this argument: %d\n", *x);

}

int main(int argc, char** argv) {

int val = 5;

 foo(&val);

}

C Basics – Structures

• Unlike C++, C has no classes or class functions!
• C++ is object oriented

• C is procedural

• Use struct type to represent structured data in C
• E.g., in C++, we might do:
Student s = new Student (“Harry Potter”);

s.print();

• In C, we’d do:
struct Student s = {.name = “Harry Potter”};

print_student (s);

7

struct Student {

 char* name;

 int id;

 float gpa;

};

C Basics – Pointers

• A pointer is a variable whose value is a memory address

• Every pointer points data of a specific data type
• E.g.,
int var = 20;

int *var_ptr = &var;

• Demo…

8

Ex. C Basics – Pointers

• A pointer is a variable whose value is a memory address

• Every pointer points data of a specific data type
• Ex.,
int var = 20; //address of var: 0xfff0

int *p1 = &var; //address of p1: 0xffec

int **p2 = &p1; //address of p2: 0xffe4

What prints 20?

What prints 0xfff0?

What prints 0xffec?

What prints 0xffe4?

9

C Basics – Void Pointers (void*)

• A void pointer is a pointer represented by the type void*.

• A void pointer is a generic pointer, it can point to data of any data type.
• E.g., a void pointer points to an integer
int var = 20;

void *v_ptr = &var;

• Can we use a float* instead of void*?
• It gives us a warning…

• Can use void* to point to any other type:
float pi = 3.1415;

struct Student s = {.name = “Harry Potter”};

v_ptr = π

v_ptr = &s;

10

C Basics – Void Pointers (void*) (cont.)

• Void pointers cannot be dereferenced directly since there is no type
information
• E.g.
struct student s = { .name = “Harry Potter" };
void* v_ptr = &s;
printf("%s\n", v_ptr->name); /* Compile-time error: can’t

dereference void pointer */

• To dereference it, we need to move it back to a pointer variable of the
correct type
• E.g.
struct student* s_ptr = v_ptr;
printf("%s\n", s_ptr->name);

OR Cast it back
printf("%s\n", ((struct student*)v_ptr)->name);

11

C Basics – Void Pointers (void*) (cont.)

• Why void*?
• It allows the data structures to contain data of any type while remaining type

agnostic

• Demo...

12

C Basics – Program Memory (stack vs. heap)

• Stack: a small, limited-size chunk of memory from the larger blob of
system memory
• Stores local variables declared in functions,

• Allocated at compile time, known as statically allocated memory

• At most 8kb

• Heap: comprises essentially all the rest of system memory
• A program must make requests to allocate memory from the heap

• Allocated at runtime, known as dynamically allocated memory

13

C Basics – malloc()

• Allocating memory on the heap
• In C++: use new operator

• In C: use malloc()  requires #include <stdlib.h>

• malloc():
• Allocates a contiguous block of memory

• Arguments: number of bytes

• Return: void*
void * allocated_memory = malloc(NUMBER_OF_BYTES);

14

C Basics – malloc() (cont.)

• How to figure out how many bytes to allocate?
• Use sizeof()!

• sizeof() – returns the size in bytes of a given variable or data type

• E.g., sizeof(int) returns 4

• Q: How to allocate an array of 1000 integers on the heap?
• int* array = malloc(1000 * sizeof(int));

15

C Basics – malloc() and struct

• Use malloc() with struct:
• struct Student *s = malloc(sizeof(struct Student));

• To access the struct’s fields using the pointer:
(*s).name = “Harry Potter";

(*s).gpa = 4.0;

OR
s->name = “Harry Potter";

s->gpa = 4.0;

• To allocate an array of structs:
• struct Student* students = malloc(1000 * sizeof(struct Student));

16

C Basics – Free dynamic memory

• We have to manually free memory allocated on the heap
• otherwise →memory leak!

• How?
• In C++, we use delete

• In C, we use free()

• E.g.,
int* array = malloc(1000 * sizeof(int));

...

free(array);

array = NULL;

• Rule of thumb: For every call to malloc() you should have a corresponding call to
free()

17

C Basics – Free dynamic memory

• We have to manually free memory allocated on the heap
• otherwise →memory leak!

• How?
• In C++, we use delete

• In C, we use free()

• E.g.,
int* array = malloc(1000 * sizeof(int));

...

free(array);

array = NULL;

• Rule of thumb: For every call to malloc() you should have a corresponding call to
free()

18

C Basics – valgrind

• Use valgrind to check if your program has memory issues:
• valgrind ./prog [cmd_line args]

• To dig deeper into where memory was lost, pass the --leak-check=full:
• valgrind --leak-check=full ./prog [args]

• Demo …

19

C Basics – strings in C

• Unlike C++, there is no string objects in C
• Thus, no std::string class

• Strings are represented in C as arrays of char values, i.e., char* type

• How do C strings indicate the end of the string?
• Use a special character – null character (‘\0’)

• Thus, C strings also called null terminated strings

• For example, the string “hello” would look like this in memory in C:

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’  array of 6 characters

20

C Basics – strings in C (cont.)

• The null character is important → indicates the end of the string

• Functions rely on ‘\0’:
• printf() – know when to stop processing the string

• strlen() – returns the number of characters in a string

• Count until it finds a null character

• Allocating memory to store a string: num of char + null char
• Q: How many char can we store in the str?

char* str = malloc(64 * sizeof(char));

21

C Basics – strings in C (cont.)

• Constant strings in C:

char* name = “Harry Potter";

• Constant strings are read-only, thus cannot be modified.

name[0] = 'l’; //illegal but no error message

• Best to mark it be constant

const char* name = “Harry Potter";

name[0] = 'l’; //illegal with compiling error

22

C Basics – strings in C (cont.)

• Useful functions for C strings: → #include <string.h>

• strlen() – returns the number of characters in the string

• strncpy() – copy a specified number of characters from one string to another

• snprintf() – “printing” content into a string, up to a specified number of characters
• From <stdio.h>

• strcmp() – compare two strings, returns 0 if they are equal

• And many more… check string.h

23

https://www.tutorialspoint.com/c_standard_library/string_h.htm

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: C Basics – printf()
	Slide 5: C Basics – scanf()
	Slide 6: C Basics – Functions (cont.)
	Slide 7: C Basics – Structures
	Slide 8: C Basics – Pointers
	Slide 9: Ex. C Basics – Pointers
	Slide 10: C Basics – Void Pointers (void*)
	Slide 11: C Basics – Void Pointers (void*) (cont.)
	Slide 12: C Basics – Void Pointers (void*) (cont.)
	Slide 13: C Basics – Program Memory (stack vs. heap)
	Slide 14: C Basics – malloc()
	Slide 15: C Basics – malloc() (cont.)
	Slide 16: C Basics – malloc() and struct
	Slide 17: C Basics – Free dynamic memory
	Slide 18: C Basics – Free dynamic memory
	Slide 19: C Basics – valgrind
	Slide 20: C Basics – strings in C
	Slide 21: C Basics – strings in C (cont.)
	Slide 22: C Basics – strings in C (cont.)
	Slide 23: C Basics – strings in C (cont.)

