CS 261-020
Data Structures

Lecture 4
Dynamic Array vs. Linked List
Begin Complexity Analysis
1/25/24, Thursday

) Oregon State

Odds and Ends

e Assighment 1 Due Sunday midnight on TEACH
* No function headers needed if they are already provided
* Require in-line comments & program header

Recap: C Basics — Function pointers

 When implementing sort() function:
* This function needs to be able to sort an array of any data type

Thus, each element is void*, and we need to use void** to control an array of void*
* The function needs the size of the array, since it is dynamic

* The function needs a comparison method to determine which element comes first

* The method will be provided by the calling function, thus we need to use a function pointer to store the address of that
method/function

: : ; * i d* i d* .
volid sort (void** arr, int n, @ (c-:g) (void* a, wvoid* b));
e Within sort():

 Whenever we need to compare two values from the array being sorted, we can just call cmp()

if (cmp(arr[i arr[3]) ==_0) {

I
/* Put arr[i] before arr[j] in the sorted array. */
}

else {
/* Put arr[i] after arr[j] in the sorted array. */

}

Recap: C Basics — Function pointers

e For the calling function (when use sort()):

* Knows the data type of each element of the array to be sorted
* Knows the size of the array

* Knows how to compare the two elements in the array

int compare ints(void* a, void* Db) {
int* ai = a, *bi = Db; /* Cast void* back to int*. */
if (*ai < *bi)
return 0O;
else
return 1;

}

* Function call will be:

sort ((void**)array of ints, number of ints, compare ints);

4

FYI: Using GDB

* Compile with debugging symbols (-g flag), e.g.:

gcc —-std=c99 filename.c -g -0 exe name

e Run it with GDB:

gdb ./exe name

——

FYI: Common GDB Commands

1. break-—setupbreakpoints, e.g.:b *main break 10
2. run - begin execution (until a break point)
print —seethevaluesofdata, e.g. print i print &ptr
4. next and step -stepline by line through the program
continue - continue until a break point OR the end of the program
6. backtrace - printsa backtrace of all stack frame (locate seg fault!!!)

*ga7 7. x/100wx [address or register] — read memory
* Examine
* 100 values
* sized as word (w, 4 bytes)
 b-byte
« g—8bytes
* In hexadecimal (x)
 d-decimal

print &main

Lecture Topics:

* Dynamic Array (cont.)
 Linked List
* Begin Complexity Analysis

Abstract Data Type (ADT)

* Abstract Data Type (ADT) — a mathematical model for data types

 Specifies:
* the type of data stored
* the operations supported on them
* the types of parameters of the operations.

* Why “abstract”?
* an implementation-independent view of the data type

Dynamic Arrays

* Elements in an array are stored in a contiguous block of memory

& * Allow random access (direct access)

e j.e., time to access the 15t element = time to access the last element

* By using array subscript ([]):

int* array
array[0] =
array[999]

4

O .

malloc (1000 * sizeof(int));

0;

S

R

Dynamic Arrays (cont.)

* Basic operations:

» get — Gets the value of the element stored at a given index in the array

 set — Sets/updates the value of the element stored at a given index in the

b v <x - 2
array 23 e — | 29 34 &

° insert — Inserts a new value into the array at a given index.

* Sometimes, dynamic array implementations limit insertion to a specific location in the
L
array, e.g. only at the end. V2 3 4 5 s 2y e

* remove — Removes an element at a given index from the array

* Sometimes, dynamic array implementations avoid moving elements up a spot by only
allowing the last element to be removed

10

Dynamic Arrays (cont.)

e Drawbacks:

* Fixed size, must be specified when the array is created
* For static array:
int array[50];
* For dynamic array:

int *array = malloc (50 * sizeof(int));

—>Need to allocate more memory if we need to store more data
* How?

* Dynamic array DS doesn’t have a fixed capacity
* Has a variable size and can grow as needed

11

Struct cLa_nanf %

=
Dynamic Arrays (cont.) f=—— el B

capacity = &8 31

11

* Need to keep track of three things:
* data —underlying data storage array
* size — number of elements currently stored in the array
* capacity — number of elements data has space for before it must be resized

* How it works?
* An array of known capacity is maintained by the dynamic array DS.
* As elements are inserted, they are simply stored in data

 If an element is inserted into the dynamic array, and there isn’t capacity for it
in the underlying d e array (data), the capacity of the underlying
data storage array\is doubled. Then the new element is inserted into this
larger data storage array.

12

8

Cr <

Dynamic Arrays

s:0

C

C

> R

13

Inserting an element into dynarray

e Case 1: if size < capacity
e At least one free spot in data

* Insert the new element o= INd@ ¥

S @+
S =
* Case 2: if size == capacity
* No free spot in data

(

5

S22

c

of et

=

NEw
y

e Step 1: allocate a new array that has twice the capaci
» Step 2: copy all elements from data to new array
» Step 3: delete the old data array and update data

* Step 4: Insert the new element

14

\

~{J

Another Example

* Insert 16 to the following dynamic array:

//_;data \ new_data,/ -

size = 4

Il

capaclity = 4 13

31

 Step 1: allocate a new array that has twice the capacity

15

Another Example

* Insert 16 to the following dynamic array:

data \ new data
size = 4 I Tee— - 5

capacity = 4 I 113
CH *18
31 e - 31

 Step 2: copy all elements from data to new array

16

Another Example

* |Insert 16 to the following dynamic array:

data new data
size = 4 \ 5
capacity = B 13

8

31

 Step 3: delete the old data array and update data

17

Another Example

* Insert 16 to the following dynamic array:

data -H\\h
size = 8 5

capacity = 8 13

31
16

e Step 4: Insert the new element

18

Common Mistakes

e 1. dynarray_create():

* In order to manage a dynamic array, how many struct dynarray doyou
need?

e 2. dynarray_insert():

* When size == capacity, do you need to free the entire struct dynarray,
i.e., free(da), before resizing?

19

Lecture Topics:

 Linked List
* Begin Complexity Analysis

20

e

struct node {

Linked List voidr val;

struct node* next; J
¥ “ Y
Node

* Linear Data Structure [iv ke

* Elements in a linked list are stored in nodes and chained together
* Not in contiguous memory
“&y* Thus, no random access

* A linked list in which each node points only to the next link in the list
is known as a singly-linked list.

* E.g.:
val=1 o val=2 »| val=3 ——+§£:Hj:ii;i;;5

Head

21

Linked List

* Always contains as many nodes as it has stored values
 Add an element = allocate a node, add it to the list
* Remove an element =2 free the node from the list

* Many forms of linked list:
* Keeps track only of the first element in the list, known as head

NULL

22

Linked List

* Many forms of linked list:
» Keeps track only of the first element in the list, known as head
» Keeps track of both the head of the list and the tail, or last element

NULL

23

Linked List

* Many forms of linked list:
» Keeps track only of the first element in the list, known as head
» Keeps track of both the head of the list and the tail, or last element

* Each node keeps track of both the next link and the previous link in the list,
known as a doubly-linked list

' l

NULL NULL
24

Linked List

* Many forms of linked list:
» Keeps track only of the first element in the list, known as head
» Keeps track of both the head of the list and the tail, or last element

* Each node keeps track of both the next link and the previous link in the list,
known as a doubly-linked list

* Last node points to the first node, known as circular-linked list

pesi—o 2| —{]| —[3]]—
> :

25

Linked List

* Many forms of linked list:

* With sentinels, which are special
nodes to designate the front/end of
the list

* E.g.: a doubly-linked list using both front
and back sentinels

NULL *— &

XXX
‘F

l—>

26

NULL

value
XXX

Inserting an element into linked list

* Where can we insert?
v/ ¢ Front/head
v * End/tail

 Middle

27

Inserting an element into linked |IS/

N—nm

3>

* Insert an element to the front:
* Construct a node to be inserted, new_node
* Assign new_node’s next to NULL

* Head is NULL (the list is empty)
e Simply let head point to new_node

* Case 1: (

* Case 2:
* Head is not NULL (the list is not empty)
* new_node’s next points to the 1%t node;
* head point to new_node

28

Y1
* Insert an element to the end: [
* Construct a node to be inserted, new_node
non et =4y AL
* Case 1:

e Head is NULL (the list is empty)
e Simply let head point to new_node Cur

* Case 2: ;g

* Head is not NULL (the list is not empty) [| _‘3 . \ l%; _i

* Loop to find the last element, last_node
* last_node’s next points to the new_node; __

29

Inserting an element into linked list

* Insert an element to the middle: = \
* Construct a node to be inserted, new_node
n-n >hexl. =A/ UL o T
* Case 1: [
e Head is NULL (the list is empty)
e Simply let head point to new_node I Ii
l =] s
e Case 2: o o

* Head is not NULL (the list is not empty)

* Loop to find the position to insert, after_this_node

* new_node’s next points to the after_this_node’s next
e after_this_node’s next points to the new_node

30

Removing and element from a linked list

* Opposite steps as inserting a new one

* Ex. Assuming the list is not empty, and we want to remove the node
containing the value 8:

31

Removing and element from a linked list

* Step 1:

* Loop to find the node to be removed and the node before, i.e., current points

to before_node, node _to remove points to the node to be removed
CM.,\KJ h _—t, v

| 7;}

32

Removing and element from a linked list

* Step 2:

e Set current’s next to node to remove’s next

33

Removing and element from a linked list

* Step 3:

* free node_to_remove

34

Missing topic: Command-line Arguments

* Arguments passed into main()
* int main(int argc, char **argv) OR
* Int main(int argc, char *argv([])

* Allow you to take input(s) from the user before running your program

e argc: number of arguments

e argv: Array of c-style strings

35

Example: 'S

* What is the value of argc if user entered this command to run the program?

./a.out -r 5 —-c 4

’ —_—

/ 23 4 g
 What does the 2-d array (argv) look like for the above command-line arguments?
aAVZG Vv [D] D = 3 Yy

> =./a.l@ut

I \

5 agv [o | [4]

36

Lecture Topics:

* Dynamic Array (cont.)
* Linked List
* Begin Complexity Analysis

37

How to compare Data Structures?

* We have different data structures, how to compare them?

* We want a way to characterize runtime or memory usage that is completely
platform-independent

* j.e. does not depend on hardware, operating system, programming language, etc.

38

Complexity Analysis

* Use Complexity Analysis to help make platform-independent comparisons of
data structures

* Also known as Big O

* To do this, we describe how a data structure’s runtime or memory usage
changes relative to a change in the input size (n)

* Importantly, we want to describe how data structures behave in the limit, as n approaches
oo (infinity)

39

Big O

* We use Big O notation to assess a data structure or algorithm’s
performance.

* Big O notation: a tool for characterizing a function in terms of its
growth rate

* Indicate an upper bound on the function’s growth rate, known as growth
order

40

Blg O g(x) provides an upper bound on f(x)

9(x) is O(f(x))

Common growth order functions

—L.‘».-e1 OOn!?T"n2 n logzn N

80 | il

70 |
60 [t
sof 1}
s i
30| 4
20 |
10 f?. 2
0

N

INHHH

1o
>

g

el e = e e o e e

T
— =i

HE -:j.L_ :._IL_

" 20 '50 40 50 60 70 80 9
N

100 vl

o |(C!
N

42

Common growth order functions

e O(1) — constant complexity

* O(log n) — log-n complexity

e O(Vn) — root-n complexity

e O(n) — linear complexity

* O(n log n) — n-log-n complexity
 O(n?) — quadratic complexity

* O(n3) — cubic complexity

* O(2™) — exponential complexity

e O(n!)—factorial complexity

43

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Recap: C Basics – Function pointers
	Slide 4: Recap: C Basics – Function pointers
	Slide 5: FYI: Using GDB
	Slide 6: FYI: Common GDB Commands
	Slide 7: Lecture Topics:
	Slide 8: Abstract Data Type (ADT)
	Slide 9: Dynamic Arrays
	Slide 10: Dynamic Arrays (cont.)
	Slide 11: Dynamic Arrays (cont.)
	Slide 12: Dynamic Arrays (cont.)
	Slide 13: Dynamic Arrays
	Slide 14: Inserting an element into dynarray
	Slide 15: Another Example
	Slide 16: Another Example
	Slide 17: Another Example
	Slide 18: Another Example
	Slide 19: Common Mistakes
	Slide 20: Lecture Topics:
	Slide 21: Linked List
	Slide 22: Linked List
	Slide 23: Linked List
	Slide 24: Linked List
	Slide 25: Linked List
	Slide 26: Linked List
	Slide 27: Inserting an element into linked list
	Slide 28: Inserting an element into linked list
	Slide 29: Inserting an element into linked list
	Slide 30: Inserting an element into linked list
	Slide 31: Removing and element from a linked list
	Slide 32: Removing and element from a linked list
	Slide 33: Removing and element from a linked list
	Slide 34: Removing and element from a linked list
	Slide 35: Missing topic: Command-line Arguments
	Slide 36: Example:
	Slide 37: Lecture Topics:
	Slide 38: How to compare Data Structures?
	Slide 39: Complexity Analysis
	Slide 40: Big O
	Slide 41: Big O
	Slide 42: Common growth order functions
	Slide 43: Common growth order functions

