
CS 261-020
Data Structures

Lecture 5

Complexity Analysis

1/30/24, Tuesday
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Odds and Ends

• Assignment 1 past due
• 70% if submit by tonight

• Recitation 4 posted 

• Assignment 2 will be posted after the 70% due of asm1

• Midterm time update:
• Previous: Tue of week 5 (Feb 6)

• Now: Tue of week 6 (Feb 13) during lecture time
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Example:
• What is the value of argc if user entered this command to run the program?

./a.out –r 5 –c 4 

• What does the 2-d array (argv) look like for the above command-line arguments?
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Lecture Topics:

• Complexity Analysis 
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How to compare Data Structures?

• We have different data structures, how to compare them?

• We want a way to characterize runtime or memory usage that is completely 
platform-independent
• i.e. does not depend on hardware, operating system, programming language, etc. 
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Complexity Analysis 

• Use Complexity Analysis to help make platform-independent comparisons of 
data structures
• Also known as Big O

• To do this, we describe how a data structure’s runtime or memory usage 
changes relative to a change in the input size (n)
• Importantly, we want to describe how data structures behave in the limit, as n approaches 
∞ (infinity)
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Big O

• We use Big O notation to assess a data structure or algorithm’s 
performance.

• Big O notation: a tool for characterizing a function in terms of its 
growth rate
• Indicate an upper bound on the function’s growth rate, known as growth 

order
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Big O
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g(x) provides an upper bound on f(x)

g(x) is O(f(x))



Common growth order functions
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Common growth order functions
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• O(1) – constant complexity

• O(log n) – log‐n complexity 

• O(√n) – root‐n complexity 

• O(n) – linear complexity 

• O(n log n) – n‐log‐n complexity 

• O(𝑛2) – quadratic complexity 

• O(𝑛3) – cubic complexity 

• O(2𝑛) – exponential complexity 

• O(n!) – factorial complexity



Compute Runtime Complexity

int sum = 0;

for (i = 0; i < n; i++) {

sum += array[i];

}

return sum;

• The instruction int sum = 0; executes in some constant time c1 independent of n

• Each iteration of the loop executes in some constant time c2, and this happens n times

• The return statement executes in some constant time c3 independent of n

• So runtime is c1 + c2*n + c3

• c1, c2, and c3 depend on the particular computer running this function, so we ignore them to 
figure out run-time complexity

• Thus, this function grows on the order of n, a.k.a. its run-time complexity is O(n)
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Compute Runtime Complexity

struct node* push (struct node * head, int val) { 

struct node *temp = new node;

temp->val = val; 

temp->next = head; 

head = temp; 

return head;

}

• Every instruction in this function executes in some constant time, independent of n

• Thus we ignore them to figure out runtime complexity. 

• Complexity: O(c1+c2+c3+c4+c5) = O(1)
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More examples

• Loops are one of the main determinants of a program’s complexity

• for (int i = 0; i < n; i++) {
...

}

• for (int i = n; i > 0; i/=2) {
...

}

• for (int i = 0; i*i < n; i++) {
...

}
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More examples

• for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

...

}

}

• for (int i = n; i > 0; i/=2) {

for (int j = 0; j < n; j++) {

...

}

}
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Determining a program’s complexity
void bubble_sort(struct node *head, int size) {

…

for (int j = 1; j < size; j++) {

for (int i = 0; i < size-j; i++){

if (current->val > current->next->val)

//swap 

//move current to next node

}

current = head;

}

}

• Number of iterations:

• O((n-1) + (n-2) + (n-3) + … + 2 + 1 )

• = 𝑂(
𝑛−1 +1 ∗(𝑛−1)

2
)

• = 𝑂
𝑛2 − 𝑛

2

• = 𝑂(𝑛2− 𝑛) Is this the final answer?
15



Dominant components

• When a growth order function has additive terms, one of those will dominate the 
others
• Specifically, function f(n) dominates g(n) if n0:n>n0, f(n) > g(n)

• In these cases, we simply ignore the non-dominant terms
• i.e. 𝑛2 − 𝑛, 𝑛2 dominates 𝑛, so we ignore n, and we say this complexity is 𝑂(𝑛2)
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Dominant components

• Example: If an algorithm grows on the order of n2 + n + log n + 1, what is the 
complexity of the algorithm using big O notation? 

• Takeaway: When loops are executed in sequence, the loop with the highest 
runtime complexity will determine the overall runtime complexity of the whole 
function.
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Dominant components

• Example: What’s the runtime complexity of the following? 
for (i = 0; i < n; i++) {
...

}

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

...
}

}

for (i = 0; i < n; i++) {
...

}
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Calculating time from Big O

• If a O(n) algorithm takes 32ms to sum 10,000 elements, how long will it take to 
sum 20,000?

• For an O(n) algorithm, if size doubles, execution time doubles.

• What if this algorithm has O(n2) complexity? 

• Runtime goes up by a factor of 4.
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Calculating time from Big O

• Ex. Merge sort, which is an O(n log n) algorithm, takes 96ms to sort an 
array of size 4000. Given this result, approximately how long merge 
sort will take to sort an array of size 1,000,000?

• Hint: 4000 ≈ 212, 1,000,000 ≈ 220
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Worst case, Best case, and avg. case

• Note that the worst case, best case, and average case complexities of a data 
structure or an algorithm can differ, for example:

int linear_search(int q, int* array, int n) {

for (int i = 0; i < n; i++) {

if (array[i] == q) {

return i;

}

}

return -1;

}

• Worst case: O(n): if q appears to be the last element / does not exist

• Best case: O(1): if q appears to be the first element 

• Avg. case: O(n): run about n/2 iterations,  drop ½ 
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Real-world Consideration

• Your program will only perform as well as your design
• Constant factors can still play a part

• Suppose you have two data structure or algorithms perform the same 
task: 
• A) 1,000,000n → O(n)

• B) 2 n2
→ O(n2) 

• Which one is better?
• It depends
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Complexity of dynamic array insertion

• Recall: dynamic array insertion
• Case 1: if size < capacity

• Insert the new element 

• Case 2: if size == capacity
• Step 1: allocate a new array that has twice the capacity 

• Step 2: copy all elements from data to new array

• Step 3: delete the old data array and update data pointer

• Step 4: Insert the new element

• Group Activity: What is the best-case, worst-case, and average case 
runtime complexities? 
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