CS 261-020
Data Structures

Lecture 6
Complexity Analysis
Stack, Queue, Deque

2/1/24, Thursday

) Oregon State

Odds and Ends

» Assignment 2 posted, due 2/11

* Due: Sunday 2/4 midnight

e Quiz 2 (unlock after today’s lecture)

Lecture Topics:

* Complexity Analysis
* Array Insertion
* List insertion & removal

 Stacks, Queues, and Deques
* Linear ADTs

P
=
Calculating time from Big O

For) =0 log a T
* Ex. Merge sort, which is an O(n log n) algorithm, takes 96ms to sort an

array of size 4000 |Given this result, approximately how long merge Ta
sort will take to sort an array of size 1,090,000? In Seesads CS)

=2
e Hint: 4000 = 212, 1,000,000 = 2%°
Y ’ g ?‘é
flnd ¢ MNiloga £ i = EeZ
:)) _—— € €=
—_ 2 =25
LenaN £a Ny ledny Za

ta Z4plp »S 24 s

Worst case, Best case, and avg. case

* Note that the worst case, best case, and average case complexities of a data
structure or an algorithm can differ, for example:

int linear search(int g, 1int* array, intcED {
for (int 1 = 0; 1 < n; 1++) {
if (arrayl[i] == q) |
return 1i;

}
}

return -1;

}
* Worst case: O(n): if g appears to be the last element / does not exist

* Best case: O(1): if g appears to be the first element
* Avg. case: O(n): run about n/2 iterations, drop %

Real-world Consideration

* Your program will only perform as well as your design
* Constant factors can still play a part

e Suppose you have two data structure or algorithms perform the same
task: | B/_\ 7’3/(\/6'4) ~ |PYidoo h
» A) 1,000,000n = O(n)
* B)2n?-> 0(n?
 Which one is better?
* |t depends

Complexity of dynamic array insertion

* Recall: dynamic array insertion
e Case 1:if size < capacity
* Insert the new element
. Case 2: if size 2= capacity
e Step 1: allocate a new array that has twice the capacity
* Step 2: copy all elements from data to new array

» Step 3: delete the old data array and update data pointer
* Step 4: Insert the new element

* Group Activity: What is the best-case, worst-case, and average case
runtime complexities? \/sn g Big O

Complexity of dynamic array insertion

e Group Activity: What is the best-case, worst-case, and average case
runtime complexities?

* Best case: when size < capacity
* Write the new value into the next open space
* Time it takes to run this operation doesn’t depend on the size of the array (n)
* Thus, O(1)

* Worst case, when size >= capacity
* Require allocating a new array

* |terate through the n elements in the old array and copying them into the
new array

* Thus, O(n)

Complexity of dynamic array insertion

e Group Activity: What is the best-case, worst-case, and average case
runtime complexities?

* How to determine average Case:

* Use amortized analysis — a large cost is defrayed by spreading smaller
payments over a period of time.

* O(n) insertion cost (worst case) happens far less often than O(1) insertion cost
(best case)

* Since we double the capacity

e Quantify the runtime complexity by aggregate analysis, by computing an
upper bound T on the total cost of a sequence of n operations. Thus, average
costisT/n

Complexity of dynamic array insertion

e Assuming a dynamic array whose capacity starts at 1, doubled if
resized. Perform a sequence of n insert. What’s the total cost? [

* 1stinsertion: Write cost 1, copy cost 0 @

« 2"d insertion: Write cost 1, copy cost 1 (resize) |_; [y |

3" insertion: Write cost 1, copy cost 2 (resize) 7T vl
4t insertion: Write cost 1, copy cost 0 P . N
 5thinsertion: Write cost 1, copy cost 4 (resize) | T | | i \/_u

10

Complexity of dynamic array insertion

e Assuming a dynamic array whose capacity starts at 1, doubled if
resized. Perform a sequence of n insert. What’s the total cost?

* Create a table:

Insertion # 1 12(D)(3(@) 4 |53)| 6 7 8 19(4)| 10
(resize # (k))
Write cost 1 1 1 1 1 1 1 1 1 1

Copy cost 0

11

2¥

_20"?‘2’}1722_72%: 1 | = /‘DOV'U —/ — —~ |
T B . .
CompIeX|ty of dynamlc darray Insertion
2
Insertion # 1 2|3 @) 4 |5@3) 6 | 7 | 8 |9(4)]| 10
(resize # (K)) l
Write cost 1| 1|11]1]21|1]1{1]1
Copy cost |12 |0 |4|0]|0]0; 8]0 g1 —|
)2
e Total Writecost=n | xn |t +% &+ 1o D

 Total copy cost:
=20+ 21422 +23+ , +2logn-1

— 2Iogn -1

=n-1

| +2 =3 =4-] :{ﬂ
\—1'3—+Lf_—7=8"|—_—23—|
|+ 2+ 4+ X =I5 =) ~| =t

12

\+ 2 -~ "f'_zx_-;

2

Xl

- |

[03,.< —
| o / “&

|’°3LV\ L

=

Complexity of dynamic array insertion

Insertion # 1 |[2(1)|3(2)] 4 |5(3)| 6 7 8 (9(4)| 10

(resize # (Kk))

Write cost 1 1 1 1 1 1 1 1 1 1

Copy cost o) 1 2 0 4 o) 0 0 8 0
* Total cost = Total Write cost + Total copy cost:
=n+(n-1) <n — | 1

<

=2n-1 i

* Thus, average is (2n-1)/n = O(1)

13

Complexity of dynamic array insertion
* Thus, average case is (2n-1)/n = O(1)

* On average, dynamic array insertion is a constant time operation.

14

Complexity of linked list insertio

N

* Assuming that we already know exactly where in the list we want to

insert a new value (e.g. at the head or at the tail)

* Steps:
* Allocating a new node
* Updating pointers

* All run in constant time, thus, the runtime compl
* For best, worst, and average cases

15

T o
L)

PriLE

T

b - -

Complexity of linked list removal

* Assuming that we already know exactly where in the list we want to

remove.) Y, | 1
iy Lo d

e Steps: l: > T T T >[Z\J)\Sj

* Updating pointers
* Free the node

* All run in constant time, thus, the runtime complexity is O(1)
* For best, worst, and average cases

16

Dynamic Array vs. Linked List

W-’th
Dynamic Array Linked List
Insertion O(n) O(1)
Removal O(n) O(1)
Access the nth element | O(1) O(n)

17

Lecture Topics:

* Complexity Analysis
* Array Insertion
* List insertion

 Stacks, Queues, and Deques
* Linear ADTs

18

Stacks

* A linear ADT that imposes a Last In, First Out (LIFO) order on elements
* The last element inserted must be the first one to remove
* Real life examples: a stack of books, a stack of dishes, web browser’s “back”

history, “undo” operation in a text editor
* A stack ADT has two ends: top and bottom /ﬁ
* New elements can only be inserted at top
* Only the element at the top may be removed }
* Two main operations: &b@h

* Push —inserts an element on the top
* Pop — removes the top element

19

Stacks

2 Push Push 4_J~\Po
5 ; , [2
.
Pop 3

20

Implement Stack using Linked List

* Using a singly linked list, head of the list = the top of the stack

* When a value is pushed into a stack, it becomes the new head of the
list

* When a value is popped, the current head of the list is removed
* The next node becomes the new head

21

Implement Stack using Linked List

NULL

22

Implement Stack using Linked List

* Complexity Analysis:
e Push()—0O(1)

* Pop()—O(1)

*For all best-case, worst-case, and average-case

23

Implement Stack using Dynamic Array
_élﬁ
* Using dynamic array, the end of the array = head of the stack

* When a new element is pushed onto the stack, it is inserted at the
end of the array

* Resize if needed, as a normal dynamic array

* When an element is popped, the array’s last element is removed

24

Implement Stack using Dynamic Array

--..me)
sush 1 s

Pop

25

Implement Stack using Dynamic Array

* Complexity Analysis
* Pop() - O(1)

» for all best-case, worst-case, and average case

e Push()

* O(1) Best-case and average case
* O(n) worst-case (when resize is needed)

26

Queues

* A linear ADT that imposes a First In, First Out (FIFO) order on
elements

* The first element to be removed is the first one that was placed into it ’Q“ZJ“’%Q

* Real life examples: a line of people waiting for check out

| oo |
* A Queue ADT has two ends: front and back (
* Inserting elements to the back
* Removing elements from the front | 'van‘é

* Two main operations: =)
* Enqueue — insert an element at the back DLE%.VLQ"L&

* Dequeue —remove an element at the front

27

Queues

Back

_* Dequeue
51413)]2

Enqueue

Front

28

Implement Queue using Linked List

* Using a singly linked list. Must keep track of both the head and the tail
of the list

* Enqueue onto the back = insert at the tail of the list

* Dequeue from the front = remove from the head of the list

29

Implement Queue using Linked List

—
head tail
(front) (back)

W ,1 =) next ,3 18 naxt ‘ .5 next NU LL

3
<

Qnguent (1)

next

.'i e next ."'ié"'- next .'-;;5;‘,__. * -.-_.,%-.'-_' naxt + N'[_:LL

dggueve (

""""""

v .3 =) next :5 = next value next NU LL

30

Implement Queue using Linked List

* Complexity Analysis:
* enqueue() — O(1)

e dequeue() — O(1)

*for all best-case, worst-case, and average case

31

Implement Queue using Dynamic Array

* Using a dynamic array,
* Front of the queue = front of the array
* Back of the queue = back of the array

* Ex. A queue with 3 values (1 at the front, 5 at the back)

U 1 . 3

1 3)

* Enqueue a new value =2 insert it at the end of the array

 What about dequeue?

32

Implement Queue using Dvnamic Array

T+
* Dequeue:
* Option 1: remove the front, and shift al

the remaining to left

e Drawback: O(n) runtime complexity for each dequeue = NOT GOOD!!!

* Option 2: allow the front of the queue to “float” back into the

middle of the array.
* Need to keep track of the start of the data

33

start = 1 —~size = 2

Implement Queue using Dynamic Array

start = 1 —size = 2 start = 2 Niqj:_i\

! . ’ : 0 1 2 3
3 0 5 7
‘ J
\ \ ' J
capacity = 4) capacity = 4 ?) >
2n pouene L] T eng vee ¢
start = 1 size = 3 start = 2 size = 3
x I OOOAN— see
4] 1 2 3 \ 0 1 2 3

3|5 |7 D[E%LAQWEL> 9 5|7

\ J | J
Y [

capacity = 4 capacity = 4

34

Implement Queue using Dynamic Array

* An array that allows data to wrap around from the back to the front is
known as a circular buffer

* Q: How do we know which index corresponds to the back of the
gueue?

* By computing a mapping between the array’s logical indices and its physical
indices

* Logical indices — the indices relative to the start of the data
* Physical indices — the indices relative to the start of the physical array

35

Implement Queue using Dynamic Array

* Mapping formula: physical = start + logical;

* Since it is circular, add the following to check: start = 2 size = 3
AN_

if (physical >= capacity) { o 1 2 3
physical —-= capacity; 9 5 | 7

J | |

[
capacity = 4

* OR: physical = (start + logical) % capacity;

* Index at which the next element will be inserted:
* Previously: array[size] — when the data starts at physical index 0
* Now: array[physical] — where physical = (start + size) % capacity

36

Implement Queue using Dynamic Array

* Dynamic Array resizing for the queue implementation

e When do we need to resize?
* size >= capacity

* When resize, reindex!
* Logical index 0 <> Physical index O

* How?
* Loop through the logical indices from 0 to size — 1

* Copy elements at each logical index in the old array to the equivalent physical
index in the new array

37

Implement Queue using Dynamic Array

* Visually, look like this:

start = 2

'

0 1 2 3

9I11I5I7

data

0 1 2 3 4 5 © 7
ewdata [svfofn] | | |
38

Implement Queue using Dynamic Array

* Complexity:
* Dequeue — O(1) for all best-case, worst-case, and average case

* Enqueue
* O(1) for best-case and average case
* O(n) for worst-case, when resize is needed

39

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Calculating time from Big O
	Slide 5: Worst case, Best case, and avg. case
	Slide 6: Real-world Consideration
	Slide 7: Complexity of dynamic array insertion
	Slide 8: Complexity of dynamic array insertion
	Slide 9: Complexity of dynamic array insertion
	Slide 10: Complexity of dynamic array insertion
	Slide 11: Complexity of dynamic array insertion
	Slide 12: Complexity of dynamic array insertion
	Slide 13: Complexity of dynamic array insertion
	Slide 14: Complexity of dynamic array insertion
	Slide 15: Complexity of linked list insertion
	Slide 16: Complexity of linked list removal
	Slide 17: Dynamic Array vs. Linked List
	Slide 18: Lecture Topics:
	Slide 19: Stacks
	Slide 20: Stacks
	Slide 21: Implement Stack using Linked List
	Slide 22: Implement Stack using Linked List
	Slide 23: Implement Stack using Linked List
	Slide 24: Implement Stack using Dynamic Array
	Slide 25: Implement Stack using Dynamic Array
	Slide 26: Implement Stack using Dynamic Array
	Slide 27: Queues
	Slide 28: Queues
	Slide 29: Implement Queue using Linked List
	Slide 30: Implement Queue using Linked List
	Slide 31: Implement Queue using Linked List
	Slide 32: Implement Queue using Dynamic Array
	Slide 33: Implement Queue using Dynamic Array
	Slide 34: Implement Queue using Dynamic Array
	Slide 35: Implement Queue using Dynamic Array
	Slide 36: Implement Queue using Dynamic Array
	Slide 37: Implement Queue using Dynamic Array
	Slide 38: Implement Queue using Dynamic Array
	Slide 39: Implement Queue using Dynamic Array

