
CS 261-020
Data Structures

Lecture 6

Complexity Analysis

Stack, Queue, Deque

2/1/24, Thursday

1

Odds and Ends

• Assignment 2 posted, due 2/11

• Due: Sunday 2/4 midnight
• Quiz 2 (unlock after today’s lecture)

2

Lecture Topics:

• Complexity Analysis
• Array Insertion

• List insertion & removal

• Stacks, Queues, and Deques
• Linear ADTs

3

Calculating time from Big O

• Ex. Merge sort, which is an O(n log n) algorithm, takes 96ms to sort an
array of size 4000. Given this result, approximately how long merge
sort will take to sort an array of size 1,000,000?

• Hint: 4000 ≈ 212, 1,000,000 ≈ 220

4

Worst case, Best case, and avg. case

• Note that the worst case, best case, and average case complexities of a data
structure or an algorithm can differ, for example:

int linear_search(int q, int* array, int n) {

for (int i = 0; i < n; i++) {

if (array[i] == q) {

return i;

}

}

return -1;

}

• Worst case: O(n): if q appears to be the last element / does not exist

• Best case: O(1): if q appears to be the first element

• Avg. case: O(n): run about n/2 iterations, drop ½

5

Real-world Consideration

• Your program will only perform as well as your design
• Constant factors can still play a part

• Suppose you have two data structure or algorithms perform the same
task:
• A) 1,000,000n → O(n)

• B) 2 n2
→ O(n2)

• Which one is better?
• It depends

6

Complexity of dynamic array insertion

• Recall: dynamic array insertion
• Case 1: if size < capacity

• Insert the new element

• Case 2: if size == capacity
• Step 1: allocate a new array that has twice the capacity

• Step 2: copy all elements from data to new array

• Step 3: delete the old data array and update data pointer

• Step 4: Insert the new element

• Group Activity: What is the best-case, worst-case, and average case
runtime complexities?

7

Complexity of dynamic array insertion

• Group Activity: What is the best-case, worst-case, and average case
runtime complexities?

• Best case: when size < capacity
• Write the new value into the next open space
• Time it takes to run this operation doesn’t depend on the size of the array (n)
• Thus, O(1)

• Worst case, when size >= capacity
• Require allocating a new array
• Iterate through the n elements in the old array and copying them into the

new array
• Thus, O(n)

8

Complexity of dynamic array insertion

• Group Activity: What is the best-case, worst-case, and average case
runtime complexities?

• How to determine average Case:
• Use amortized analysis – a large cost is defrayed by spreading smaller

payments over a period of time.
• O(n) insertion cost (worst case) happens far less often than O(1) insertion cost

(best case)
• Since we double the capacity

• Quantify the runtime complexity by aggregate analysis, by computing an
upper bound T on the total cost of a sequence of n operations. Thus, average
cost is T / n

9

Complexity of dynamic array insertion

• Assuming a dynamic array whose capacity starts at 1, doubled if
resized. Perform a sequence of n insert. What’s the total cost?

• 1st insertion: Write cost 1, copy cost 0

• 2nd insertion: Write cost 1, copy cost 1 (resize)

• 3rd insertion: Write cost 1, copy cost 2 (resize)

• 4th insertion: Write cost 1, copy cost 0

• 5th insertion: Write cost 1, copy cost 4 (resize)

• …..

10

Complexity of dynamic array insertion

• Assuming a dynamic array whose capacity starts at 1, doubled if
resized. Perform a sequence of n insert. What’s the total cost?

• Create a table:

11

Insertion #

(resize # (k))

1 2 (1) 3 (2) 4 5 (3) 6 7 8 9 (4) 10 ...

Write cost 1 1 1 1 1 1 1 1 1 1 ...

Copy cost 0 1 2 0 4 0 0 0 8 0 ...

Complexity of dynamic array insertion

• Total Write cost = n

• Total copy cost:

= 20 + 21 + 22 + 23 + … + 2logn – 1

= 2logn – 1

= n – 1
12

Insertion #

(resize # (k))

1 2 (1) 3 (2) 4 5 (3) 6 7 8 9 (4) 10 ...

Write cost 1 1 1 1 1 1 1 1 1 1 ...

Copy cost 0 1 2 0 4 0 0 0 8 0 ...

Complexity of dynamic array insertion

• Total cost = Total Write cost + Total copy cost:

= n + (n – 1)

= 2n – 1

• Thus, average is (2n-1)/n = O(1)

13

Insertion #

(resize # (k))

1 2 (1) 3 (2) 4 5 (3) 6 7 8 9 (4) 10 ...

Write cost 1 1 1 1 1 1 1 1 1 1 ...

Copy cost 0 1 2 0 4 0 0 0 8 0 ...

Complexity of dynamic array insertion

• Thus, average case is (2n-1)/n = O(1)

• On average, dynamic array insertion is a constant time operation.

14

Complexity of linked list insertion

• Assuming that we already know exactly where in the list we want to
insert a new value (e.g. at the head or at the tail).

• Steps:
• Allocating a new node

• Updating pointers

• All run in constant time, thus, the runtime complexity is O(1)
• For best, worst, and average cases

15

Complexity of linked list removal

• Assuming that we already know exactly where in the list we want to
remove.

• Steps:
• Updating pointers

• Free the node

• All run in constant time, thus, the runtime complexity is O(1)
• For best, worst, and average cases

16

Dynamic Array vs. Linked List

Dynamic Array Linked List

Insertion O(n) O(1)

Removal O(n) O(1)

Access the nth element O(1) O(n)

17

Lecture Topics:

• Complexity Analysis
• Array Insertion

• List insertion

• Stacks, Queues, and Deques
• Linear ADTs

18

Stacks

• A linear ADT that imposes a Last In, First Out (LIFO) order on elements
• The last element inserted must be the first one to remove

• Real life examples: a stack of books, a stack of dishes, web browser’s “back”
history, “undo” operation in a text editor

• A stack ADT has two ends: top and bottom
• New elements can only be inserted at top

• Only the element at the top may be removed

• Two main operations:
• Push – inserts an element on the top

• Pop – removes the top element

19

Stacks

20

Implement Stack using Linked List

• Using a singly linked list, head of the list = the top of the stack

• When a value is pushed into a stack, it becomes the new head of the
list

• When a value is popped, the current head of the list is removed
• The next node becomes the new head

21

Implement Stack using Linked List

22

Implement Stack using Linked List

23

• Complexity Analysis:
• Push() – O(1)

• Pop() – O(1)

*For all best-case, worst-case, and average-case

Implement Stack using Dynamic Array

24

• Using dynamic array, the end of the array = head of the stack

• When a new element is pushed onto the stack, it is inserted at the
end of the array
• Resize if needed, as a normal dynamic array

• When an element is popped, the array’s last element is removed

Implement Stack using Dynamic Array

25

Implement Stack using Dynamic Array

26

• Complexity Analysis
• Pop() – O(1)

• for all best-case, worst-case, and average case

• Push()
• O(1) Best-case and average case

• O(n) worst-case (when resize is needed)

Queues

27

• A linear ADT that imposes a First In, First Out (FIFO) order on
elements
• The first element to be removed is the first one that was placed into it

• Real life examples: a line of people waiting for check out

• A Queue ADT has two ends: front and back
• Inserting elements to the back

• Removing elements from the front

• Two main operations:
• Enqueue – insert an element at the back

• Dequeue – remove an element at the front

Queues

28

Implement Queue using Linked List

29

• Using a singly linked list. Must keep track of both the head and the tail
of the list

• Enqueue onto the back → insert at the tail of the list

• Dequeue from the front → remove from the head of the list

Implement Queue using Linked List

30

Implement Queue using Linked List

31

• Complexity Analysis:
• enqueue() – O(1)

• dequeue() – O(1)

*for all best-case, worst-case, and average case

Implement Queue using Dynamic Array

32

• Using a dynamic array,
• Front of the queue = front of the array

• Back of the queue = back of the array

• Ex. A queue with 3 values (1 at the front, 5 at the back)

• Enqueue a new value → insert it at the end of the array

• What about dequeue?

Implement Queue using Dynamic Array

33

• Dequeue:
• Option 1: remove the front, and shift all the remaining to left

• Drawback: O(n) runtime complexity for each dequeue → NOT GOOD!!!

• Option 2: allow the front of the queue to “float” back into the
middle of the array.
• Need to keep track of the start of the data

Implement Queue using Dynamic Array

34

Implement Queue using Dynamic Array

35

• An array that allows data to wrap around from the back to the front is
known as a circular buffer

• Q: How do we know which index corresponds to the back of the
queue?
• By computing a mapping between the array’s logical indices and its physical

indices

• Logical indices – the indices relative to the start of the data

• Physical indices – the indices relative to the start of the physical array

Implement Queue using Dynamic Array

36

• Since it is circular, add the following to check:
if (physical >= capacity) {

physical -= capacity;
}

• OR: physical = (start + logical) % capacity;

• Index at which the next element will be inserted:
• Previously: array[size] – when the data starts at physical index 0
• Now: array[physical] – where physical = (start + size) % capacity

• Mapping formula: physical = start + logical;

Implement Queue using Dynamic Array

37

• Dynamic Array resizing for the queue implementation

• When do we need to resize?
• size >= capacity

• When resize, reindex!
• Logical index 0 → Physical index 0

• How?
• Loop through the logical indices from 0 to size – 1

• Copy elements at each logical index in the old array to the equivalent physical
index in the new array

Implement Queue using Dynamic Array

38

• Visually, look like this:

Implement Queue using Dynamic Array

39

• Complexity:
• Dequeue – O(1) for all best-case, worst-case, and average case

• Enqueue
• O(1) for best-case and average case

• O(n) for worst-case, when resize is needed

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Calculating time from Big O
	Slide 5: Worst case, Best case, and avg. case
	Slide 6: Real-world Consideration
	Slide 7: Complexity of dynamic array insertion
	Slide 8: Complexity of dynamic array insertion
	Slide 9: Complexity of dynamic array insertion
	Slide 10: Complexity of dynamic array insertion
	Slide 11: Complexity of dynamic array insertion
	Slide 12: Complexity of dynamic array insertion
	Slide 13: Complexity of dynamic array insertion
	Slide 14: Complexity of dynamic array insertion
	Slide 15: Complexity of linked list insertion
	Slide 16: Complexity of linked list removal
	Slide 17: Dynamic Array vs. Linked List
	Slide 18: Lecture Topics:
	Slide 19: Stacks
	Slide 20: Stacks
	Slide 21: Implement Stack using Linked List
	Slide 22: Implement Stack using Linked List
	Slide 23: Implement Stack using Linked List
	Slide 24: Implement Stack using Dynamic Array
	Slide 25: Implement Stack using Dynamic Array
	Slide 26: Implement Stack using Dynamic Array
	Slide 27: Queues
	Slide 28: Queues
	Slide 29: Implement Queue using Linked List
	Slide 30: Implement Queue using Linked List
	Slide 31: Implement Queue using Linked List
	Slide 32: Implement Queue using Dynamic Array
	Slide 33: Implement Queue using Dynamic Array
	Slide 34: Implement Queue using Dynamic Array
	Slide 35: Implement Queue using Dynamic Array
	Slide 36: Implement Queue using Dynamic Array
	Slide 37: Implement Queue using Dynamic Array
	Slide 38: Implement Queue using Dynamic Array
	Slide 39: Implement Queue using Dynamic Array

