CS 261-020
Data Structures

Lecture 6
Complexity Analysis
Stack, Queue, Deque
2/1/24, Thursday
Odds and Ends

• Assignment 2 posted, due 2/11

• Due: Sunday 2/4 midnight
 • Quiz 2 (unlock after today’s lecture)
Lecture Topics:

• Complexity Analysis
 • Array Insertion
 • List insertion & removal

• Stacks, Queues, and Deques
 • Linear ADTs
Calculating time from Big O

• Ex. Merge sort, which is an $O(n \log n)$ algorithm, takes 96ms to sort an array of size 4000. Given this result, approximately how long merge sort will take to sort an array of size 1,000,000?

• Hint: $4000 \approx 2^{12}$, $1,000,000 \approx 2^{20}$

\[
\frac{f(n_1)}{f(n_2)} = \frac{t_1}{t_2} \Rightarrow \frac{n_1 \log n_1}{n_2 \log n_2} = \frac{t_1}{t_2}
\]

\[
\frac{2^{12} \log 2^{12}}{2^{20} \log 2^{20}} = \frac{96}{t_2}
\]

$\log_x x^y = y$
Worst case, Best case, and avg. case

• Note that the worst case, best case, and average case complexities of a data structure or an algorithm can differ, for example:

```c
int linear_search(int q, int* array, int n) {
    for (int i = 0; i < n; i++) {
        if (array[i] == q) {
            return i;
        }
    }
    return -1;
}
```

• Worst case: $O(n)$: if q appears to be the last element / does not exist
• Best case: $O(1)$: if q appears to be the first element
• Avg. case: $O(n)$: run about n/2 iterations, drop $\frac{1}{2}$
Real-world Consideration

• Your program will only perform as well as your design
 • Constant factors can still play a part

• Suppose you have two data structure or algorithms perform the same task:
 • A) 1,000,000n \(\rightarrow\) O(n)
 • B) 2 \(n^2\) \(\rightarrow\) O\((n^2)\)
 • Which one is better?
 • It depends

\[
\begin{align*}
\mathcal{f}_A(n) &= 1,000,000n \\
\mathcal{f}_B(n) &= 2n^2
\end{align*}
\]

\[n_D = \min\{ 0, 0, 0, 0 \} \]
Complexity of dynamic array insertion

• Recall: dynamic array insertion
 • Case 1: if size < capacity
 • Insert the new element
 • Case 2: if size == capacity
 • Step 1: allocate a new array that has twice the capacity
 • Step 2: copy all elements from data to new array
 • Step 3: delete the old data array and update data pointer
 • Step 4: Insert the new element

• Group Activity: What is the best-case, worst-case, and average case runtime complexities? Using Big O
Complexity of dynamic array insertion

• Group Activity: What is the best-case, worst-case, and average case runtime complexities?

• Best case: when \(\text{size} < \text{capacity} \)
 • Write the new value into the next open space
 • Time it takes to run this operation doesn’t depend on the size of the array \((n)\)
 • Thus, \(O(1)\)

• Worst case, when \(\text{size} \geq \text{capacity} \)
 • Require allocating a new array
 • Iterate through the \(n\) elements in the old array and copying them into the new array
 • Thus, \(O(n)\)
Complexity of dynamic array insertion

• Group Activity: What is the best-case, worst-case, and average case runtime complexities?

• How to determine average Case:
 • Use amortized analysis – a large cost is defrayed by spreading smaller payments over a period of time.
 • O(n) insertion cost (worst case) happens far less often than O(1) insertion cost (best case)
 • Since we double the capacity
 • Quantify the runtime complexity by aggregate analysis, by computing an upper bound T on the total cost of a sequence of n operations. Thus, average cost is T / n
Complexity of dynamic array insertion

• Assuming a dynamic array whose capacity starts at 1, doubled if resized. Perform a sequence of \(n \) insert. What’s the total cost?

• 1st insertion: Write cost 1, copy cost 0
• 2nd insertion: Write cost 1, copy cost 1 (resize)
• 3rd insertion: Write cost 1, copy cost 2 (resize)
• 4th insertion: Write cost 1, copy cost 0
• 5th insertion: Write cost 1, copy cost 4 (resize)
•
Complexity of dynamic array insertion

- Assuming a dynamic array whose capacity starts at 1, doubled if resized. Perform a sequence of n insert. What’s the total cost?

- Create a table:

<table>
<thead>
<tr>
<th>Insertion # (resize # (k))</th>
<th>1</th>
<th>2 (1)</th>
<th>3 (2)</th>
<th>4</th>
<th>5 (3)</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 (4)</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write cost</td>
<td>1</td>
</tr>
<tr>
<td>Copy cost</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>
\[
2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{\log n - 1} = \frac{1 \times (2^{\log n} - 1)}{2 - 1} = 2^n - 1
\]

Complexity of dynamic array insertion

<table>
<thead>
<tr>
<th>Insertion # (resize # (k))</th>
<th>1</th>
<th>2 (1)</th>
<th>3 (2)</th>
<th>4</th>
<th>5 (3)</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 (4)</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write cost</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Copy cost</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

- Total **Write cost** = \(n\) \[\frac{1 \times n}{1} = 1 + 2 + 4 + 8 + 16 + \cdots + 2^n - 1\]
- Total **copy cost**: \[1 + 2 + 4 + 8 + 16 + \cdots + 2^{\log n - 1} = \frac{1 \times (2^{\log n} - 1)}{2 - 1} = 2^n - 1\]
Complexity of dynamic array insertion

<table>
<thead>
<tr>
<th>Insertion # (resize # ((k)))</th>
<th>1</th>
<th>2 (1)</th>
<th>3 (2)</th>
<th>4</th>
<th>5 (3)</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 (4)</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write cost</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Copy cost</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

- Total cost = Total Write cost + Total copy cost:

 \[\text{Total cost} = n + (n - 1) \]

 \[\frac{2n - 1}{n} = 2 - \frac{1}{n} \]

 \[\log_2 n = \log_{10} x \]

- Thus, average is \((2n-1)/n = O(1)\)
Complexity of dynamic array insertion

• Thus, average case is $(2n-1)/n = O(1)$

• On average, dynamic array insertion is a constant time operation.
Complexity of linked list insertion

• Assuming that we already know exactly where in the list we want to insert a new value (e.g. at the head or at the tail).

• Steps:
 • Allocating a new node
 • Updating pointers

• All run in constant time, thus, the runtime complexity is $O(1)$
 • For best, worst, and average cases
Complexity of linked list removal

• Assuming that we already know exactly where in the list we want to remove.

• Steps:
 • Updating pointers
 • Free the node

• All run in constant time, thus, the runtime complexity is $O(1)$
 • For best, worst, and average cases
Dynamic Array vs. Linked List

<table>
<thead>
<tr>
<th>Operation</th>
<th>Dynamic Array</th>
<th>Linked List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Removal</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Access the nth element</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Lecture Topics:

• Complexity Analysis
 • Array Insertion
 • List insertion

• Stacks, Queues, and Deques
 • Linear ADTs
Stacks

- A linear ADT that imposes a Last In, First Out (LIFO) order on elements
 - The last element inserted must be the first one to remove
 - Real life examples: a stack of books, a stack of dishes, web browser’s “back” history, “undo” operation in a text editor

- A stack ADT has two ends: top and bottom
 - New elements can only be inserted at top
 - Only the element at the top may be removed

- Two main operations:
 - Push – inserts an element on the top
 - Pop – removes the top element
Implement Stack using Linked List

• Using a singly linked list, head of the list = the top of the stack

• When a value is **pushed** into a stack, it becomes the new head of the list

• When a value is **popped**, the current head of the list is removed
 • The **next node** becomes the new head
Implement Stack using Linked List

push(8)
pop()
Implement Stack using Linked List

• Complexity Analysis:
 • Push() – $O(1)$

 • Pop() – $O(1)$

*For all best-case, worst-case, and average-case
Implement Stack using Dynamic Array

- Using dynamic array, the end of the array = head of the stack

- When a new element is pushed onto the stack, it is inserted at the end of the array
 - Resize if needed, as a normal dynamic array

- When an element is popped, the array’s last element is removed
Implement Stack using Dynamic Array

Push (8)

Push (16)

Push (32)

Pop
Implement Stack using Dynamic Array

• Complexity Analysis
 • Pop() – $O(1)$
 • for all best-case, worst-case, and average case

 • Push()
 • $O(1)$ Best-case and average case
 • $O(n)$ worst-case (when resize is needed)
Queues

• A linear ADT that imposes a First In, First Out (FIFO) order on elements
 • The first element to be removed is the first one that was placed into it
 • Real life examples: a line of people waiting for check out

• A Queue ADT has two ends: front and back
 • Inserting elements to the back
 • Removing elements from the front

• Two main operations:
 • Enqueue – insert an element at the back
 • Dequeue – remove an element at the front
Queues
Implement Queue using Linked List

• Using a singly linked list. Must keep track of both the head and the tail of the list

• Enqueue onto the back → insert at the tail of the list

• Dequeue from the front → remove from the head of the list
Implement Queue using Linked List

enqueue(7)
dequeue()
Implement Queue using Linked List

• Complexity Analysis:
 • enqueue() – $O(1)$
 • dequeue() – $O(1)$

*for all best-case, worst-case, and average case
Implement Queue using Dynamic Array

• Using a dynamic array,
 • Front of the queue = front of the array
 • Back of the queue = back of the array

• Ex. A queue with 3 values (1 at the front, 5 at the back)

 0 1 2 3
 1 3 5

• Enqueue a new value → insert it at the end of the array

• What about dequeue?
Implement Queue using Dynamic Array

• Dequeue:
 • Option 1: remove the front, and shift all the remaining to left
 • Drawback: O(n) runtime complexity for each dequeue → NOT GOOD!!
 • Option 2: allow the front of the queue to “float” back into the middle of the array.
 • Need to keep track of the start of the data
Implement Queue using Dynamic Array

- enqueue(7)
- enqueue(9)
- dequeue()
Implement Queue using Dynamic Array

• An array that allows data to wrap around from the back to the front is known as a **circular buffer**

• Q: How do we know which index corresponds to the back of the queue?
 • By computing a mapping between the array’s **logical indices** and its **physical indices**

• Logical indices – the indices relative to the **start of the data**

• Physical indices – the indices relative to the **start of the physical array**
Implement Queue using Dynamic Array

• Mapping formula: \(\text{physical} = \text{start} + \text{logical} \);

• Since it is circular, add the following to check:

  ```java
  if (\text{physical} >= \text{capacity}) {
      \text{physical} -= \text{capacity};
  }
  ```

 OR: \(\text{physical} = (\text{start} + \text{logical}) \mod \text{capacity} \);

• Index at which the next element will be inserted:
 • Previously: \(\text{array}[\text{size}] \) – when the data starts at physical index 0
 • Now: \(\text{array}[\text{physical}] \) – where physical = (start + size) \mod capacity
Implement Queue using Dynamic Array

• Dynamic Array resizing for the queue implementation
• When do we need to resize?
 • size >= capacity
• When resize, reindex!
 • Logical index 0 ↔ Physical index 0

• How?
 • Loop through the logical indices from 0 to size – 1
 • Copy elements at each logical index in the old array to the equivalent physical index in the new array
Implement Queue using Dynamic Array

• Visually, look like this:
Implement Queue using Dynamic Array

• Complexity:
 • Dequeue – $O(1)$ for all best-case, worst-case, and average case

 • Enqueue
 • $O(1)$ for best-case and average case
 • $O(n)$ for worst-case, when resize is needed