
CS 261-020
Data Structures

Lecture 7

Stack, Queue, Deque (cont.)

Encapsulation and Iterators

2/6/24, Tuesday

1

Odds and Ends

• Recitation 5 posted

• Assignment 2 due Sunday midnight

• Assignment 1 demo due Friday (2/9)

• Midterm:
• Tuesday (2/13) during lecture time
• Same classroom
• Review on Thursday

2

Lecture Topics:

• Stacks, Queues, and Deques
• Linear ADTs

• Encapsulation and Iterators

3

Implement Queue using Dynamic Array

4

• Using a dynamic array,
• Front of the queue = front of the array

• Back of the queue = back of the array

• Ex. A queue with 3 values (1 at the front, 5 at the back)

• Enqueue a new value → insert it at the end of the array

• What about dequeue?

Implement Queue using Dynamic Array

5

• Dequeue:
• Option 1: remove the front, and shift all the remaining to left

• Drawback: O(n) runtime complexity for each dequeue → NOT GOOD!!!

• Option 2: allow the front of the queue to “float” back into the
middle of the array.
• Need to keep track of the start of the data

Implement Queue using Dynamic Array

6

Implement Queue using Dynamic Array

7

• An array that allows data to wrap around from the back to the front is
known as a circular buffer

• Q: How do we know which index corresponds to the back of the
queue?
• By computing a mapping between the array’s logical indices and its physical

indices

• Logical indices – the indices relative to the start of the data

• Physical indices – the indices relative to the start of the physical array

Implement Queue using Dynamic Array

8

• Since it is circular, add the following to check:
if (physical >= capacity) {

physical -= capacity;
}

• OR: physical = (start + logical) % capacity;

• Index at which the next element will be inserted:
• Previously: array[size] – when the data starts at physical index 0
• Now: array[physical] – where physical = (start + size) % capacity

• Mapping formula: physical = start + logical;

Implement Queue using Dynamic Array

9

• Dynamic Array resizing for the queue implementation

• When do we need to resize?
• size >= capacity

• When resize, reindex!
• Logical index 0 → Physical index 0

• How?
• Loop through the logical indices from 0 to size – 1

• Copy elements at each logical index in the old array to the equivalent physical
index in the new array

Implement Queue using Dynamic Array

10

• Visually, look like this:
physical = (start + logical) % capacity;

Implement Queue using Dynamic Array

11

• Complexity:
• Dequeue – O(1) for all best-case, worst-case, and average case

• Enqueue
• O(1) for best-case and average case

• O(n) for worst-case, when resize is needed

Deques

12

• A deque (double-ended queue) is a linear ADT that supports insertion
and removal at both ends

• Examples: multi-processor job scheduling

• Four primary operations:
• Add to front

• Add to back

• Remove from front

• Remove from back

*Implement Deque using Dynamic Array

13

• Very similar to dynamic array-based queue implementation
• Using circular buffer

• Not covered in this class

• FYI: https://www.geeksforgeeks.org/implementation-deque-using-
circular-array/

https://www.geeksforgeeks.org/implementation-deque-using-circular-array/
https://www.geeksforgeeks.org/implementation-deque-using-circular-array/

Implement Deque using Linked List

14

• Since a deque supports removal from both front and back, we need
to use a doubly linked list
• Allows to remove from the back and find the new back

• Use front and back sentinel in the list
• Sentinel: a special node that is never removed from the list (doesn’t store a

value)

Implement Deque using Linked List

15

• Values are inserted into the list in nodes that live between the
sentinels. For example:

• Add front: insert a new node after the front sentinel

• Add back: insert a new node before the back sentinel

• Remove front: remove the node after the front sentinel

• Remove back: remove the node before the back sentinel

Implement Deque using Linked List

16

• Why do we use sentinels?

• w/o sentinels, each operation would have to implemented differently, i.e.:
• Add to the front w/o sentinels → update the head pointer upon each insertion

• Add to the back w/o sentinels → update the tail pointer upon each insertion

• w/ sentinels, both insertions (add to front and add to back) can use the exact
same mechanics
• So can both of the removal operations

Implement Deque using Linked List

17

• add_before() – insert a new node with a given value before a specified node
already in the list, i.e.:

void add_before(void* value, struct node* next) {

struct node* new_node = malloc(sizeof(struct node));

new_node->value = value;

new_node->prev = next->prev;

next->prev->next = new_node;

new_node->next = next;

next->prev = new_node;

}

Implement Deque using Linked List

18

• Since our list uses sentinels, then our add_to_front() becomes:

void add_to_front(void* value) {

add_before(value, front_sentinel->next);

}

• Our add_to_back() becomes:

void add_to_back(void* value) {

add_before(value, back_sentinel);

}

Implement Deque using Linked List

19

• Similarly, assuming our list has a remove_node() function, then our
remove_front() becomes:

void remove_front() {

remove_node(front_sentinel->next);

}

• Our remove_back() becomes:

void remove_back() {

remove_node(back_sentinel->prev);

}

• To check if the list is empty:

if (front_sentinel->next == back_sentinel)

Implement Deque using Linked List

20

• Complexity:
• Add to front – O(1)

• Add to back – O(1)

• Remove front – O(1)

• Remove back – O(1)

*For all best case, worst case, and average case

Lecture Topics:

• Stacks, Queues, and Deques
• Linear ADTs

• Encapsulation and Iterators

21

Have you seen this error before?

22

dereferencing a pointer of incomplete type

Encapsulation

23

• Encapsulation – hide the internal details of a data type from the user of
that data type, instead exposing only a simplified interface through which
the user interacts with the data type
• User – another developer who will be using the code we’ve written

• For example, linked list implementation has hidden the details of the list
implementation behind a simplified interface.
• Only the name of linked list data type was exposed to the user (i.e., struct list)

• If the user tried to access internal fields (list->head) → error
• “dereferencing a pointer of incomplete type”

Why Encapsulation?

24

• Reduces the cognitive overhead to understand

• Cannot misuse (and possibly break) the data type
• Cannot set list->head to NULL (could cause a memory leak)

• Easier to implement the data type
• Avoid tedious error checking

• Potential challenges:
• What if our user wants to iterate through each element in the collection within a

loop?
• Problem: cannot access the internals, i.e., for linked list, cannot access the head

Iterator

25

• Iterator – a data type acts as a companion to a collection and provides a
mechanism to iterate through that collection
• Implemented to have access to the internals of the collection

• Each specific kind of collection will have its own iterator data type

• Two common functions:
• next () – returns the current value, and moves the iterator to the next element

• has_next () – returns true or false to indicate whether or not there is another
element afterwards

To use an Iterator

26

• Assuming we have an iterator iter over a collection:

while (has_next(iter)) {

value = next(iter);

... /* Do something with value. */

}

Linked list Iterator

27

• Implement an iterator for a linked list:
• In C: defined within the same file
• In C++: using nested classes or friend

• Our linked list iterator must have access to the internals of the linked list:
struct node {

void* value;
struct node* next;

};

struct list {
struct node* head;

};

Linked list Iterator

28

• 1. define a structure to represent the list iterator
• How to iterate? Using a pointer (i.e., curr) to represent the current node
• Initially points to the head, and moves to the next (i.e., curr = curr -> next;)

struct list_iterator {

struct node* curr;

};

• 2. implement a function to create a new iterator and associate it with a list to
iterate:

struct list_iterator* list_iterator_create(struct list* list) {

struct list_iterator* iter = malloc(sizeof(struct list_iterator));

iter->curr = list->head;

return iter;

}

Linked list Iterator

29

• 3. Implement has_next()

int has_next(struct list_iterator* iter) {
return iter->curr != NULL;

}

• 4. Implement next()

void* next(struct list_iterator* iter) {
void* value = iter->curr->value;
iter->curr = iter->curr->next;
return value;

}

• *5. Polish (i.e., add error checking)

30

Next Lecture

• Binary Search

• Midterm Review

31

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Implement Queue using Dynamic Array
	Slide 5: Implement Queue using Dynamic Array
	Slide 6: Implement Queue using Dynamic Array
	Slide 7: Implement Queue using Dynamic Array
	Slide 8: Implement Queue using Dynamic Array
	Slide 9: Implement Queue using Dynamic Array
	Slide 10: Implement Queue using Dynamic Array
	Slide 11: Implement Queue using Dynamic Array
	Slide 12: Deques
	Slide 13: *Implement Deque using Dynamic Array
	Slide 14: Implement Deque using Linked List
	Slide 15: Implement Deque using Linked List
	Slide 16: Implement Deque using Linked List
	Slide 17: Implement Deque using Linked List
	Slide 18: Implement Deque using Linked List
	Slide 19: Implement Deque using Linked List
	Slide 20: Implement Deque using Linked List
	Slide 21: Lecture Topics:
	Slide 22: Have you seen this error before?
	Slide 23: Encapsulation
	Slide 24: Why Encapsulation?
	Slide 25: Iterator
	Slide 26: To use an Iterator
	Slide 27: Linked list Iterator
	Slide 28: Linked list Iterator
	Slide 29: Linked list Iterator
	Slide 30
	Slide 31: Next Lecture

