
CS 261-020
Data Structures

Lecture 7

Stack, Queue, Deque (cont.)

Encapsulation and Iterators

2/6/24, Tuesday
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Odds and Ends

• Recitation 5 posted 

• Assignment 2 due Sunday midnight 

• Assignment 1 demo due Friday (2/9)

• Midterm: 
• Tuesday (2/13) during lecture time
• Same classroom 
• Review on Thursday 
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Lecture Topics:

• Stacks, Queues, and Deques 
• Linear ADTs  

• Encapsulation and Iterators
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Implement Queue using Dynamic Array
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• Using a dynamic array, 
• Front of the queue = front of the array

• Back of the queue = back of the array 

• Ex. A queue with 3 values (1 at the front, 5 at the back)

• Enqueue a new value → insert it at the end of the array

• What about dequeue? 



Implement Queue using Dynamic Array
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• Dequeue:
• Option 1: remove the front, and shift all the remaining to left 

• Drawback: O(n) runtime complexity for each dequeue → NOT GOOD!!! 

• Option 2: allow the front of the queue to “float” back into the 
middle of the array. 
• Need to keep track of the start of the data



Implement Queue using Dynamic Array
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Implement Queue using Dynamic Array
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• An array that allows data to wrap around from the back to the front is 
known as a circular buffer

• Q: How do we know which index corresponds to the back of the 
queue? 
• By computing a mapping between the array’s logical indices and its physical 

indices 

• Logical indices – the indices relative to the start of the data

• Physical indices – the indices relative to the start of the physical array



Implement Queue using Dynamic Array
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• Since it is circular, add the following to check: 
if (physical >= capacity) {

physical -= capacity;
}

• OR: physical = (start + logical) % capacity;

• Index at which the next element will be inserted:
• Previously: array[size] – when the data starts at physical index 0
• Now: array[physical] – where physical = (start + size) % capacity 

• Mapping formula: physical = start + logical;



Implement Queue using Dynamic Array
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• Dynamic Array resizing for the queue implementation 

• When do we need to resize? 
• size >= capacity

• When resize, reindex!
• Logical index 0 → Physical index 0

• How?
• Loop through the logical indices from 0 to size – 1

• Copy elements at each logical index in the old array to the equivalent physical 
index in the new array 



Implement Queue using Dynamic Array
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• Visually, look like this: 
physical = (start + logical) % capacity;



Implement Queue using Dynamic Array
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• Complexity: 
• Dequeue – O(1) for all best-case, worst-case, and average case

• Enqueue 
• O(1) for best-case and average case 

• O(n) for worst-case, when resize is needed 



Deques
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• A deque (double-ended queue) is a linear ADT that supports insertion
and removal at both ends 

• Examples: multi-processor job scheduling 

• Four primary operations:
• Add to front

• Add to back

• Remove from front

• Remove from back



*Implement Deque using Dynamic Array 
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• Very similar to dynamic array-based queue implementation 
• Using circular buffer 

• Not covered in this class 

• FYI: https://www.geeksforgeeks.org/implementation-deque-using-
circular-array/

https://www.geeksforgeeks.org/implementation-deque-using-circular-array/
https://www.geeksforgeeks.org/implementation-deque-using-circular-array/


Implement Deque using Linked List
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• Since a deque supports removal from both front and back, we need 
to use a doubly linked list
• Allows to remove from the back and find the new back 

• Use front and back sentinel in the list 
• Sentinel: a special node that is never removed from the list (doesn’t store a 

value) 



Implement Deque using Linked List
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• Values are inserted into the list in nodes that live between the 
sentinels. For example: 

• Add front: insert a new node after the front sentinel 

• Add back: insert a new node before the back sentinel

• Remove front: remove the node after the front sentinel

• Remove back: remove the node before the back sentinel



Implement Deque using Linked List
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• Why do we use sentinels? 

• w/o sentinels, each operation would have to implemented differently, i.e.:
• Add to the front w/o sentinels → update the head pointer upon each insertion 

• Add to the back w/o sentinels → update the tail pointer upon each insertion

• w/ sentinels, both insertions (add to front and add to back) can use the exact 
same mechanics 
• So can both of the removal operations 



Implement Deque using Linked List
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• add_before() – insert a new node with a given value before a specified node 
already in the list, i.e.: 

void add_before(void* value, struct node* next) {

struct node* new_node = malloc(sizeof(struct node));

new_node->value = value;

new_node->prev = next->prev;

next->prev->next = new_node;

new_node->next = next;

next->prev = new_node;

}



Implement Deque using Linked List
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• Since our list uses sentinels, then our add_to_front() becomes: 

void add_to_front(void* value) {

add_before(value, front_sentinel->next);

}

• Our add_to_back() becomes:

void add_to_back(void* value) {

add_before(value, back_sentinel);

}



Implement Deque using Linked List
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• Similarly, assuming our list has a remove_node() function, then our 
remove_front() becomes: 

void remove_front() {

remove_node(front_sentinel->next);

}

• Our remove_back() becomes:

void remove_back() {

remove_node(back_sentinel->prev);

}

• To check if the list is empty: 

if (front_sentinel->next == back_sentinel)



Implement Deque using Linked List
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• Complexity: 
• Add to front – O(1)

• Add to back – O(1)

• Remove front – O(1)

• Remove back – O(1)

*For all best case, worst case, and average case



Lecture Topics:

• Stacks, Queues, and Deques 
• Linear ADTs  

• Encapsulation and Iterators
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Have you seen this error before?
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dereferencing a pointer of incomplete type



Encapsulation 
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• Encapsulation – hide the internal details of a data type from the user of 
that data type, instead exposing only a simplified interface through which 
the user interacts with the data type
• User – another developer who will be using the code we’ve written 

• For example, linked list implementation has hidden the details of the list 
implementation behind a simplified interface. 
• Only the name of linked list data type was exposed to the user (i.e., struct list)

• If the user tried to access internal fields (list->head) → error
• “dereferencing a pointer of incomplete type” 



Why Encapsulation?
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• Reduces the cognitive overhead to understand 

• Cannot misuse (and possibly break) the data type
• Cannot set list->head to NULL (could cause a memory leak)

• Easier to implement the data type 
• Avoid tedious error checking 

• Potential challenges: 
• What if our user wants to iterate through each element in the collection within a 

loop? 
• Problem: cannot access the internals, i.e., for linked list, cannot access the head



Iterator
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• Iterator – a data type acts as a companion to a collection and provides a 
mechanism to iterate through that collection 
• Implemented to have access to the internals of the collection 

• Each specific kind of collection will have its own iterator data type 

• Two common functions: 
• next () – returns the current value, and moves the iterator to the next element

• has_next () – returns true or false to indicate whether or not there is another 
element afterwards 



To use an Iterator
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• Assuming we have an iterator iter over a collection: 

while (has_next(iter)) {

value = next(iter);

... /* Do something with value. */

}



Linked list Iterator
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• Implement an iterator for a linked list: 
• In C: defined within the same file
• In C++: using nested classes or friend 

• Our linked list iterator must have access to the internals of the linked list:
struct node {

void* value;
struct node* next;

};

struct list {
struct node* head;

};



Linked list Iterator
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• 1. define a structure to represent the list iterator
• How to iterate? Using a pointer (i.e., curr) to represent the current node
• Initially points to the head, and moves to the next (i.e., curr = curr -> next;)

struct list_iterator {

struct node* curr;

};

• 2. implement a function to create a new iterator and associate it with a list to 
iterate: 

struct list_iterator* list_iterator_create(struct list* list) {

struct list_iterator* iter = malloc(sizeof(struct list_iterator));

iter->curr = list->head;

return iter;

}



Linked list Iterator
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• 3. Implement has_next() 

int has_next(struct list_iterator* iter) {
return iter->curr != NULL;

}

• 4. Implement next()

void* next(struct list_iterator* iter) {
void* value = iter->curr->value;
iter->curr = iter->curr->next;
return value;

}

• *5. Polish (i.e., add error checking) 
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Next Lecture 

• Binary Search 

• Midterm Review
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