
CS 261-020
Data Structures

Lecture 8

Binary Search

Binary Trees

Midterm Review

2/8/24, Thursday

1

Odds and Ends

• Assignment 2 due Sunday midnight

• Assignment 1 demo due Friday (2/9)

• Midterm:
• Tuesday (2/13) during lecture time, same classroom

• Review today

2

Lecture Topics:

• Binary Search

• Midterm Review

3

Binary Search

4

• Important to be able to search through a collection of element
• i.e., find the index of an element

• Determine that element does not exist

• How to do this using linear data structures we’ve seen?
• By iterating through elements one by one until we find the element or the end of

the collection (doesn’t exist)

• This is called linear search

• Runtime Complexity: O(n) where n is number of elements of the collection

• Can we improve this?

Binary Search

5

• Can you perform a search for 65 in the following array:

• What do you notice?
• The array is sorted
• Each iteration, eliminate half of the remaining array

• Binary Search: iterate through an ordered (sorted) array, and repeatedly divide the search
interval in half

• Run Complexity: O(log n)

3 8 12 14 23 40 48 51 63 65 71 79 83 89 90 100

Binary Search vs. Linear Search

6

• Searching in an array of size n = 1,000,000
• Linear Search: O(n) = 1,000,000 comparisons, on average

• Binary Search: O(log n) ≈ 20 comparisons, on average

• Searching in an array of size n = 4,000,000,000
• Linear Search: O(n) = 4,000,000,000 comparisons, on average

• Binary Search: O(log n) ≈ 32 comparisons, on average

→ Binary Search is a lot faster, especially for large values of n

How does Binary Search work?

7

• At each iteration:
• Compare the query value (the value it’s searching for) to the value at the midpoint

of the array

• If they matches, break and return (i.e., index)

• Otherwise …
• If query value < array’s midpoint value, repeat only on the “lower” half of the array

• If query value > array’s midpoint value, repeat only on the “upper” half of the array

• If the array under consideration has size 0, break and return. The query value does
not exist. (i.e., -1 or where it should be inserted to maintain a sorted array)

How does Binary Search work?

8

• Iteration:

int binary_search(int q, int* array, int n) {

int mid, low = 0, high = n - 1;

while (low <= high) {

mid = (low + high) / 2;

if (array[mid] == q)

return mid;

else if (array[mid] < q)

low = mid + 1;

else

high = mid - 1;

}

return low;

}

3 8 12 14 23 40 48 51 63 65 71 79 83 89 90 100

• low – the first index of the sub-array
• high – the last index of the sub-array
• mid – the index of the midpoint of the sub-array

How does Binary Search work?

9

• Recursion:

int binary_search(int q, int* array, int low, int high) {

while (low <= high) {

int mid = (low + high) / 2;

if (array[mid] == q)

return mid;

else if (array[mid] < q)

return binary_search(q, array, mid+1, high);

else

return binary_search(q, array, low, mid-1);

}

return low;

}

3 8 12 14 23 40 48 51 63 65 71 79 83 89 90 100

• low – the first index of the sub-array
• high – the last index of the sub-array
• mid – the index of the midpoint of the sub-array

Ordered Array

10

• Note: Binary Search can only work within an ordered (sorted) array
• The assumption that allows binary search to eliminate half of the array at each

iteration

• Make sure the array is sorted before using binary search!
• Using a sorting algorithm

• Using binary search

Ordering Array using a sorting algorithm

11

• Using a sorting algorithm to order an array

• Runtime complexity of the best general-purpose sorting algorithm
• O (n log n)

• Best if we limit the number of times to “sort”

• Examples:
• Look up in a phone book

• Look up a word in a dictionary

• What if we expected new elements to be inserted frequently?

Ordering Array using Binary Search

12

• If data is frequently changing (i.e., insertion), run binary search after each
insertion to maintain an ordered array
• Recall: binary_search() may return the index where an element should be

inserted

• Thus, the cost of each insertion:
• O(log n) to identify the index to be inserted using binary search

• O(n) to shift the subsequent elements back one spot

• Since O(n) dominates O(log n), the cost of each insertion is O(n)

• The total cost of n insertion is O(n*n) = O(n2)

Lecture Topics:

• Binary Trees

13

Trees

14

• Tree: non-linear data structure, represents data as a hierarchical structure,
encoding the hierarchical relationships between different elements

• Node: each individual data element in a tree
• Contains the data element and points to other nodes

• Edge (arc): an encoded relationship between data elements
• Represents directed relationships

Tree Examples

15

• Examples:
• Computer’s filesystem

• Object model of a web page

• Compiler’s abstract syntax tree of a program

Trees

16

• Parent: A node P in a tree is called the parent of another
node C if P has an edge that points directly to C.
• A is parent of B, C, D; B is parent of E and F

• Child: A node C in a tree is called the child of another
node P if P is C’s parent.
• B, C, D are children of A; J, K are children of G

• Sibling: A node S1 is the sibling of another node S2 if S1
and S2 share the same parent node P
• B, C, D are siblings; J, K are siblings

• Descendant: The descendants of a node N are all of N’s
children, plus its children’s children, and so forth.
• E, F, and I are descendants of node B, and nodes H and L are

descendants of node D

• Ancestor: A node A is the ancestor of another node D if D
is a descendant of A
• E, B, and A are ancestors of I, and G, C, and A are ancestors of

node K

Trees

17

• Root: Ancestor of all other nodes in the tree. Each tree
has exactly one root.
• node A is the root.

• Interior (node): A node has at least one child.
• A, B, C, D, E, G, and H are interior nodes.

• Leaf (node): A node has no children.
• F, I, J, K, and L are leaves.

• Subtree: the portion of a tree that consists of a single
node N, all of N’s descendants, and the edges joining
these nodes.
• the subtree rooted at node B contains the nodes B, E, F, and I

and the edges joining those nodes.

Trees

18

• Path: the collection of edges in a tree joining a node to
one of its descendants.

• Path length: the number of edges in that path.
• the path from C to K has length 2, since it contains 2 edges.

• Depth: The depth of a node N in a tree is the length of
the path from the root to N.
• the depth of K is 3.

• The depth of A (root) is 0.

• Height: The maximum depth of any node in the tree.
• The tree has height 3

Trees

19

• Constraints to be counted as a tree:
• Each node in the structure may have only one parent.

• The edges of the structure many not form any cycles.
• there cannot be a path from any node to itself.

Binary Trees

20

• Binary Tree: a tree in which each node can have at most two children (left
child and right child).

• Left subtree: the subtree rooted at that node’s left child

• Right subtree: the subtree rooted at that node’s right child

Binary Trees

21

• Full Binary Tree: a binary tree that every interior node has exactly two children.

• Perfect Binary Tree: a full binary tree where all the leaves are at the same depth.
• If a perfect binary tree has height h, then

• It has 2h leaves

• It has 2h+1 – 1 total nodes

• If a perfect binary tree has n nodes, then its height is approximately log(n)

Binary Trees

22

• Complete Binary Tree: a binary tree that is perfect except for the deepest level, whose
nodes are all as far left as possible

Binary Search Trees

23

• Recall: each node in a tree represents a data element.

• Represent each data element using a key (identifier)
• The data element may also contain other data, which we can refer to as its value

• Assuming these keys can be ordered in relation to others
• i.e., integer keys can be ordered numerically, string keys can be ordered alphabetically

Binary Search Trees

24

• A binary search tree (BST) is a binary tree that:

• the key of each node N is greater than all the keys in N’s left subtree and less than
or equal to all the keys in N’s right subtree

• *Note: A BST does NOT have to be full, perfect, complete, etc.

Next Lecture: BST Operations

25

• BST Operations:
• Finding an element

• Inserting a new element

• Removing an element

• Runtime Complexity of BST operations

• BST traversals

Lecture Topics:

• Midterm Review

26

Midterm

27

• 2/13 Tuesday during lecture time (2:00 – 3:20)

• Same classroom

• Close book, close notes

• No calculator allowed

• Question types: multiple choices, T/F, short answer
• Similar to your quizzes

• Bring pencil/pen, and your photo ID (student ID/driver license/passport)

• Scratch paper will be provided if needed

Midterm

28

• Topics: Week 1-5 (lecture 1-8):
• C Basics

• scanf()/printf()

• Conditionals and loops

• Struct

• Pointers
• void*

• Stack vs. heap

• C strings

• Function pointers

Midterm

29

• Topics: Week 1-5 (lecture 1-8):
• Dynamic Arrays

• Struct: data, size, capacity

• Basic operations:
• get()

• set()

• insert()

• When to resize?

• remove()

• Linked List
• Struct: val, next pointer

• Basic operations:
• Insert()

• Remove()

Midterm

30

• Topics: Week 1-5 (lecture 1-8):
• Complexity Analysis

• Big O

• Compute Runtime & Space complexity
• Dominant Components

• Best, worst, and average cases

• Dynamic Array insertion

• Linked list insertion

• Stack
• LIFO

• Basic Operations:
• Push()

• Pop()

• Implement stack using linked list vs. dynamic array
• Complexity

Midterm

31

• Topics: Week 1-5 (lecture 1-8):
• Queue

• FIFO

• Basic Operations
• Enqueue()

• Dequeue()

• Implement queue using linked list vs. dynamic array
• Complexity

• Circular buffer: logical index vs. physical index

• Deque
• Basic operations:

• Add front

• Add back

• Remove front

• Remove back

Midterm

32

• Topics: Week 1-5 (lecture 1-8):
• Deque

• Implement deque using doubly linked list
• Sentinels

• Complexity

• Encapsulation

• Iterator
• next()

• has_next()

• Binary Search
• collection must be sorted

• Complexity

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Binary Search
	Slide 5: Binary Search
	Slide 6: Binary Search vs. Linear Search
	Slide 7: How does Binary Search work?
	Slide 8: How does Binary Search work?
	Slide 9: How does Binary Search work?
	Slide 10: Ordered Array
	Slide 11: Ordering Array using a sorting algorithm
	Slide 12: Ordering Array using Binary Search
	Slide 13: Lecture Topics:
	Slide 14: Trees
	Slide 15: Tree Examples
	Slide 16: Trees
	Slide 17: Trees
	Slide 18: Trees
	Slide 19: Trees
	Slide 20: Binary Trees
	Slide 21: Binary Trees
	Slide 22: Binary Trees
	Slide 23: Binary Search Trees
	Slide 24: Binary Search Trees
	Slide 25: Next Lecture: BST Operations
	Slide 26: Lecture Topics:
	Slide 27: Midterm
	Slide 28: Midterm
	Slide 29: Midterm
	Slide 30: Midterm
	Slide 31: Midterm
	Slide 32: Midterm

