CS 261-020 Data Structures

Lecture 8 Binary Search Binary Trees Midterm Review 2/8/24, Thursday

1

Odds and Ends

- Assignment 2 due Sunday midnight
- Assignment 1 demo due Friday (2/9)
- Midterm:
 - Tuesday (2/13) during lecture time, same classroom
 - Review today

Lecture Topics:

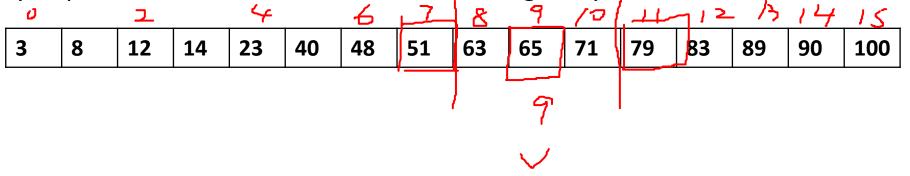
- Binary Search
- Midterm Review

Binary Search

- Important to be able to search through a collection of element
 - i.e., find the index of an element
 - Determine that element does not exist
- How to do this using linear data structures we've seen?
 - By *iterating through* elements one by one until we find the element or the end of the collection (doesn't exist)
 - This is called linear search
 - Runtime Complexity: O(n) where n is number of elements of the collection
- Can we improve this?

Binary Search

• Can you perform a search for 65 in the following array: /



- What do you notice?
 - The array is sorted
 - Each iteration, eliminate half of the remaining array
- Binary Search: iterate through an ordered (sorted) array, and repeatedly divide the search interval in half
- Run Complexity: O(log n)

Binary Search vs. Linear Search

- Searching in an array of size n = 1,000,000
 - Linear Search: O(n) = 1,000,000 comparisons, on average
 - Binary Search: O(log n) ≈ 20 comparisons, on average
- Searching in an array of size n = 4,000,000,000
 - Linear Search: O(n) = 4,000,000,000 comparisons, on average
 - Binary Search: O(log n) ≈ 32 comparisons, on average
- → Binary Search is a lot faster, especially for large values of n

How does Binary Search work?

- At each iteration:
 - Compare the query value (the value it's searching for) to the value at the midpoint of the array
 - If they matches, break and return (i.e., index)
 - Otherwise ...
 - If query value < array's midpoint value, repeat only on the "lower" half of the array
 - If query value > array's midpoint value, repeat only on the "upper" half of the array
 - If the array under consideration has size 0, break and return. The query value does not exist. (i.e., -1 or where it should be inserted to maintain a sorted array)

How does Binary Search work?

23 63 8 12 14 40 48 51 65 71 79 83 89 90 100 3 • Iteration:

```
int binary search(int q, int* array, int n) {
int mid, low = 0, high = n - 1;
while (low <= high)
       mid = (low + high) / 2;
       if (array[mid] == q)
              return mid;
       else if (array[mid] < q)</pre>
             low = mid + 1;
       else
             high = mid -1;
return low;
```

- low the first index of the sub-array
- high the last index of the sub-array
- mid the index of the midpoint of the sub-array

How does Binary Search work?

23 63 83 8 12 14 40 48 51 65 71 79 89 90 100 3 • Recursion:

```
int binary search(int q, int* array, int low, int high) {
while (low <= high) {</pre>
        int mid = (low + high) / 2;
        if (array[mid] == q)
               return mid;
        else if (array[mid] < q)
               return binary search(q, array, mid+1, high);
        else
               return binary search(q, array, low, mid-1);
                                          low – the first index of the sub-array
return low;
                                          high – the last index of the sub-array
                                          mid – the index of the midpoint of the sub-array
                                  9
```

Ordered Array

- Note: Binary Search can only work within an ordered (sorted) array
 - The assumption that allows binary search to eliminate half of the array at each iteration

low	mid	high
< array[mid]		> array[mid]

- Make sure the array is **sorted** before using binary search!
 - Using a sorting algorithm
 - Using binary search

Ordering Array using a sorting algorithm

- Using a sorting algorithm to order an array
- Runtime complexity of the best general-purpose sorting algorithm
 - O (n log n)
 - Best if we limit the number of times to "sort"
- Examples:
 - Look up in a phone book
 - Look up a word in a dictionary
- What if we expected new elements to be inserted frequently?

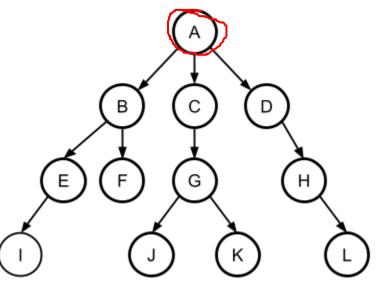
Ordering Array using Binary Search

- If data is frequently changing (i.e., insertion), run binary search after each insertion to maintain an ordered array
 - Recall: binary_search() may return the index where an element should be inserted
- Thus, the cost of each insertion:
 - O(log n) to identify the index to be inserted using binary search
 - O(n) to shift the subsequent elements back one spot
 - Since O(n) dominates O(log n), the cost of each insertion is O(n)
- The total cost of n insertion is $O(n^*n) = O(n^2)$

Lecture Topics:

• Binary Trees

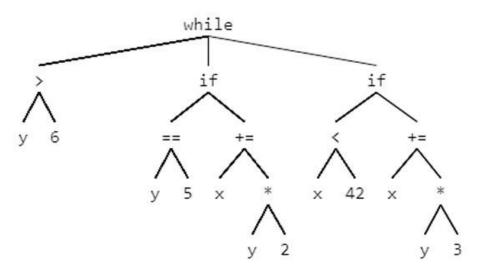
• Tree: non-linear data structure, represents data as a hierarchical structure, encoding the hierarchical relationships between different elements

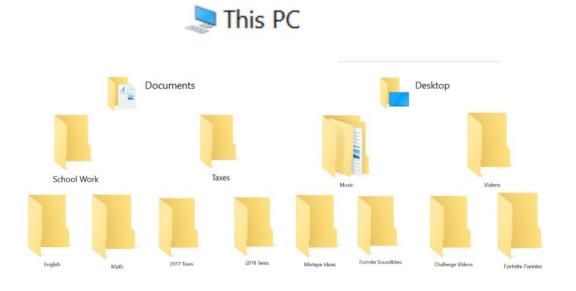


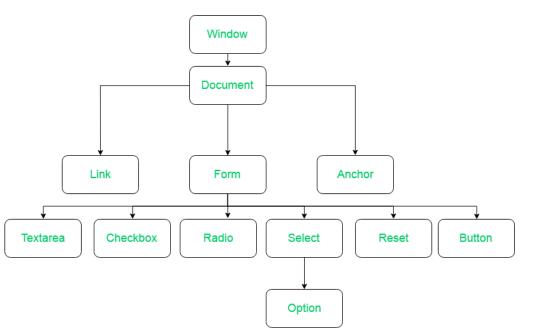
- Node: each individual data element in a tree
 - Contains the data element and points to other nodes
- Edge (arc): an encoded relationship between data elements
 - Represents directed relationships

Tree Examples

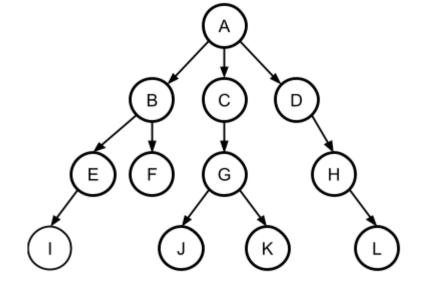
- Examples:
 - Computer's filesystem
 - Object model of a web page
 - Compiler's abstract syntax tree of a program



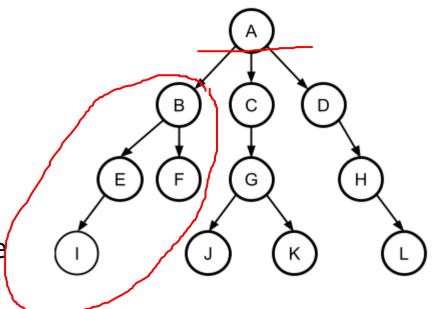




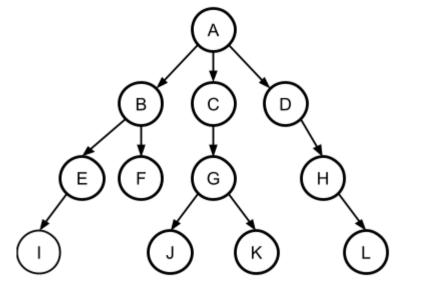
- **Parent**: A node P in a tree is called the parent of another node C if P has an edge that points directly to C.
 - A is parent of B, C, D; B is parent of E and F
- *Child*: A node C in a tree is called the child of another node P if P is C's parent.
 - B, C, D are children of A; J, K are children of G
- Sibling: A node S₁ is the sibling of another node S₂ if S₁ and S₂ share the same parent node P
 - B, C, D are siblings; J, K are siblings
- Descendant: The descendants of a node N are all of N's children, plus its children's children, and so forth.
 - E, F, and I are descendants of node B, and nodes H and L are descendants of node D
- Ancestor: A node A is the ancestor of another node D if D is a descendant of A
 - E, B, and A are ancestors of I, and G, C, and A are ancestors of node K



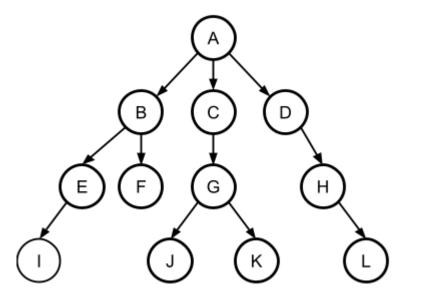
- *Root*: Ancestor of all other nodes in the tree. Each tree has exactly one root.
 - node A is the root.
- Interior (node): A node has at least one child.
 - A, B, C, D, E, G, and H are interior nodes.
- Leaf (node): A node has no children.
 - F, I, J, K, and L are leaves.
- *Subtree*: the portion of a tree that consists of a single node *N*, all of *N*'s descendants, and the edges joining these nodes.
 - the subtree rooted at node B contains the nodes B, E, F, and I and the edges joining those nodes.



- *Path*: the collection of edges in a tree joining a node to one of its descendants.
- *Path length:* the number of edges in that path.
 - the path from C to K has length 2, since it contains 2 edges.
- **Depth:** The depth of a node N in a tree is the length of the path from the root to N.
 - the depth of K is 3.
 - The depth of A (root) is 0.
- Height: The maximum depth of any node in the tree.
 - The tree has height 3

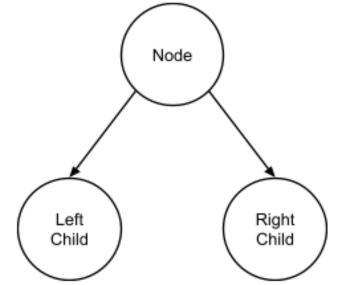


- Constraints to be counted as a tree:
 - Each node in the structure may have only one parent.
 - The edges of the structure many not form any cycles.
 - there cannot be a path from any node to itself.



Binary Trees

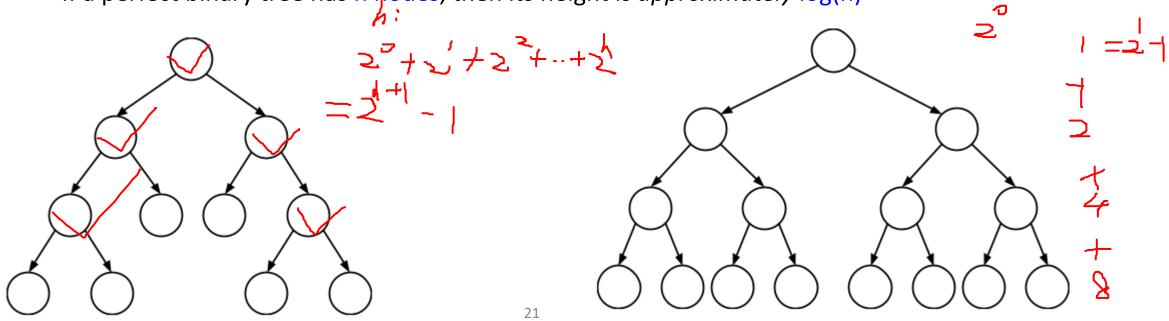
• *Binary Tree*: a tree in which each node can have at most two children (left child and right child).



- *Left subtree*: the subtree rooted at that node's left child
- *Right subtree*: the subtree rooted at that node's right child

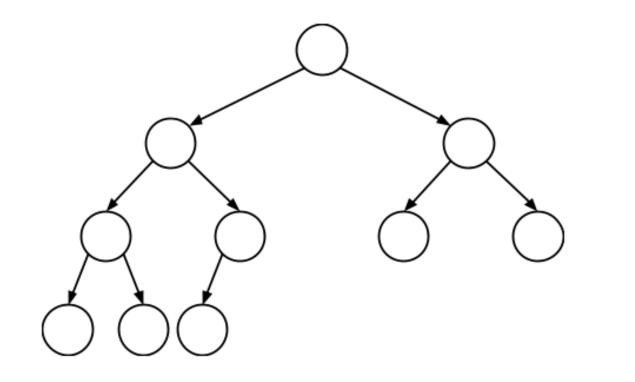
Binary Trees

- *Full Binary Tree*: a binary tree that every interior node has exactly two children.
- *Perfect Binary Tree*: a full binary tree where all the leaves are at the same depth.
 - If a perfect binary tree has height h, then
 - It has 2^h leaves
 - It has 2^{h+1} 1 total nodes
 - If a perfect binary tree has n nodes, then its height is approximately log(n)



Binary Trees

• Complete Binary Tree: a binary tree that is perfect except for the deepest level, whose nodes are all as far left as possible

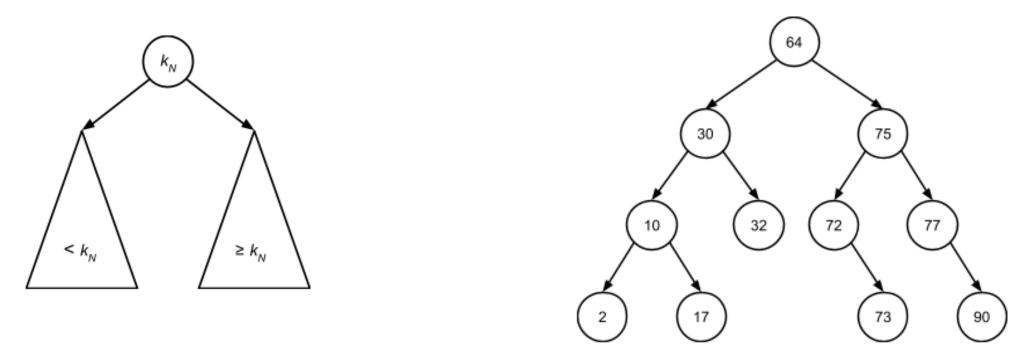


Binary Search Trees

- Recall: each node in a tree represents a data element.
- Represent each data element using a key (identifier)
 - The data element may also contain other data, which we can refer to as its value
- Assuming these keys can be ordered in relation to others
 - i.e., integer keys can be ordered numerically, string keys can be ordered alphabetically

Binary Search Trees

- A *binary search tree* (**BST**) is a binary tree that:
 - the key of each node N is greater than all the keys in N's left subtree and less than or equal to all the keys in N's right subtree



• *Note: A BST does NOT have to be full, perfect, complete, etc.

Next Lecture: BST Operations

- BST Operations:
 - Finding an element
 - Inserting a new element
 - Removing an element
- Runtime Complexity of BST operations
- BST traversals

Lecture Topics:

• Midterm Review

- 2/13 Tuesday during lecture time (2:00 3:20)
- Same classroom
- Close book, close notes
- No calculator allowed
- Question types: multiple choices, T/F, short answer
 - Similar to your quizzes
- Bring pencil/pen, and your photo ID (student ID/driver license/passport)
- Scratch paper will be provided if needed

- Topics: Week 1-5 (lecture 1-8):
 - C Basics
 - scanf()/printf()
 - Conditionals and loops
 - Struct
 - Pointers
 - void*
 - Stack vs. heap
 - C strings

char []

• Function pointers

- Topics: Week 1-5 (lecture 1-8):
 - Dynamic Arrays
 - Struct: data, size, capacity
 - Basic operations:
 - get()
 - set()
 - insert()
 - When to resize?
 - remove()
 - Linked List
 - Struct: val, next pointer
 - Basic operations:
 - Insert()
 - Remove()

- Topics: Week 1-5 (lecture 1-8):
 - Complexity Analysis
 - Big O
 - Compute Runtime & Space complexity
 - Dominant Components
 - Best, worst, and average cases
 - Dynamic Array insertion
 - Linked list insertion
 - Stack
 - LIFO
 - Basic Operations:
 - Push()
 - Pop()
 - Implement stack using linked list vs. dynamic array
 - Complexity

- Topics: Week 1-5 (lecture 1-8):
 - Queue
 - FIFO
 - Basic Operations
 - Enqueue()
 - Dequeue()
 - Implement queue using linked list vs. dynamic array
 - Complexity
 - Circular buffer: logical index vs. physical index
 - Deque
 - Basic operations:
 - Add front
 - Add back
 - Remove front
 - Remove back

- Topics: Week 1-5 (lecture 1-8):
 - Deque
 - Implement deque using doubly linked list
 - Sentinels
 - Complexity
 - Encapsulation
 - Iterator
 - next()
 - has_next()
 - Binary Search
 - collection must be sorted
 - Complexity