Odds and Ends

• Assignment 3 posted

• No quiz this week

• Don’t forget to demo your assignment 2!
Lecture Topics:

- Midterm Report
- Binary Trees
Binary Trees

• **Binary Tree**: a tree in which each node can have at most two children (left child and right child).

• **Left subtree**: the subtree rooted at that node’s left child

• **Right subtree**: the subtree rooted at that node’s right child
Lecture Topics:

• BST Operations:
 • Finding an element
 • Inserting a new element
 • Removing an element

• Runtime Complexity of BST operations
• BST traversals
BST Operations

• Remember:
 • when a given node does not have a subtree on either the left or right side, the node’s child on that side will be NULL.
 • a leaf node in a BST is one where both the left and right child are NULL.
BST Operations: Finding an element

- Elements in a BST are located based on their keys
 - When a user wants to locate an element, they will need to provide the key of the element

- How does it work?
 - Keep a pointer to the current node N, starting at the root. Examining one node at a time
 - If N is NULL, the key k_q doesn’t exist in the tree, and the search has failed. Break.
 - If N’s key is equal to k_q, the search has succeeded. Break.
 - If k_q is less than the N’s key, move the current node to point to its left child and repeat.
 - If k_q is greater than N’s key, move the current node to point to its right child and repeat.
BST Operations: Finding an element

• Pseudocode: iteration

```java
find(bst, k) {
    N = bst.root
    while N is not NULL{
        if N.key equals k
            return success
        else if k < N.key
            N = N.left
        else:
            N = N.right
    }
    return failure
}
```

• Example: search for key 17
BST Operations: Inserting a new element

• New elements are always inserted into a BST as leaves.
 • avoid to restructure the tree

• Hint: find the location for the new element that maintains the BST property at all nodes in the tree.

• find the location \(\rightarrow \) using search/find function!
 • Instead of stopping the search if/when \(k \) is found in the tree, insertion always proceeds until reaching a NULL node
 • The location of this NULL node, then, is the location at which to insert the new node
 • The new node will become the child of the NULL node’s parent
BST Operations: Inserting a new element

• Pseudocode:
  ```java
  insert(bst, k, v){
    P = NULL
    N = bst.root
    while N is not NULL{
      P = N
      if k < N.key:
        N = N.left
      else:
        N = N.right
    }
    create a new node as the child of P containing k, v
  }
  ```

• P is used to track the location of the new node’s parent
• if P is NULL at the end of the search here, then the BST is empty, and the new node should be inserted as the root of the tree
• If P is not NULL, then the new node will be inserted as either the left or right child of P, depending on whether k is less than or greater than (or equal to) P’s key
BST Operations: Inserting a new element

• Pseudocode:

```
insert(bst, k, v) {
    P = NULL
    N = bst.root
    while N is not NULL{
        P = N
        if k < N.key:
            N = N.left
        else:
            N = N.right
    }
    create a new node as the child of P containing k, v
}
```

• Example: insert the key 40
BST Operations: Removing an element

• How to remove the element with a key 2?
 • Easy! Simply remove it since it is a leaf node

• How to remove the element with a key 64?
 • Umm, then which node should be our new root, so it maintains BST after removal?
BST Operations: Removing an element

- BST removal: depend on the number of children that element’s BST node has

 - If the element to be removed is a leaf node: (i.e., 2)
 - simply free that node and update its parent to have a NULL child

 - If the element to be removed is stored in a node with just a single child: (i.e., 72)
 - simply free that node and move its child to become a child of the node’s parent
BST Operations: Removing an element

• If the element to be removed is stored in a node with two children: (i.e., 64):
 • need to find that node’s **in-order successor** (the next node in in-order traversal of the BST).

• Line up all keys in ascending order:
 • 2 10 17 30 32 64 72 73 75 77 90

• The in-order successor for a node with key k, is the node to the very next key after k in this ordered list of keys
 • i.e., the in-order successor of root (64) is the node with key 72
BST Operations: Removing an element

• If the element to be removed is stored in a node with two children: (i.e., 64):

 • In BST, a node N’s in-order successor is always the leftmost node in N’s right subtree.
 • branch right in the tree from N, and then continue to branch left until we can no longer do so, The last node we reach will be N’s in-order successor
BST Operations: Removing an element

• If the element to be removed is stored in a node with two children: (i.e., 64):
 • Denote N’s parent node as P_N (if N is the root node, P_N will represent the root pointer for the entire tree)
 • Find N’s in-order successor S. Denote S’s parent node as P_S.
 • Update pointers to give N’s children to S
 • N’s left child becomes S’s left child.
 • S’s right child (which might be NULL) becomes P_S’s left child.
 • N’s right child becomes S’s right child.
 • Update P_N to replace N with S.
 • Specifically, S becomes P_N’s left or right child, as appropriate, or the root of the tree, if N was the root.
 • Free the node N.
BST Operations: Removing an element

• If the element to be removed is stored in a node with two children: (i.e., 64):

Before removing N

After removing N
BST Operations: Removing an element

• Pseudocode:

```plaintext
remove(bst, k):
    N, P_N ← find the node to be removed and its parent
    based on key k, as in the find() function
    if N has no children:
        update P_N to point to NULL instead of N
    else if N has one child:
        update P_N to point to N’s child instead of N
    else:
        S, P_S ← find N’s in-order successor and its
        parent, as described above
        S.left ← N.left
        if S is not N.right:
            P_S.left ← S.right
            S.right ← N.right
        update P_N to point to S instead of N
    free N
```
BST Operations: Removing an element

- Example: Remove the root node (64)
Example: Remove the root node (64)
- 1. identify that node’s in-order successor (S) and its parent (P_S):
BST Operations: Removing an element

• Example: Remove the root node (64)
 • 2. update pointers so that S replaces N and S’s right child replaces S as P_S’s child:
BST Operations: Removing an element

- Example: Remove the root node (64)
 - 3. The end result is a tree with the root node (i.e. N) removed.

- note that the BST property is maintained by this removal:
Lecture Topics:

• BST Operations:
 • Finding an element
 • Inserting a new element
 • Removing an element

• Runtime Complexity of BST operations
• BST traversals
Runtime Complexity of BST Operations

• Main factor of all 3 BST operations: search within the tree
 • find(): search for the query key
 • insert(): search for the location at which to insert
 • remove(): search for both query key and its in-order successor

• Search begins at the root, moves down one level at each iteration, until reaches the bottom (or finds the node it is searching for)
 • Number of search iteration == the height of the tree, h

• Thus, runtime complexity for searching in all 3 operations: O(h)
Runtime Complexity of BST Operations

• Extra work done besides searching:
 • find(): none
 • insert(): allocate the new node, and update its new parent $\rightarrow O(1)$
 • remove(): update a few pointers $\rightarrow O(1)$

• Thus, the runtime complexity:
 • find() – $O(h)$
 • insert() – $O(h)$
 • remove() – $O(h)$

• What is the range of h if the BST has n nodes?
 • Depending on the order of insertion, h can be $[\log(n), n]$

\rightarrow limit the height of the BST! (more later)
Lecture Topics:

• BST Operations:
 • Finding an element
 • Inserting a new element
 • Removing an element

• Runtime Complexity of BST operations

• BST traversals
Binary Tree Traversal

• How to print the value stored at each node in a binary tree?

• A tree traversal: a method for visiting each node in a tree exactly once and performing some operation or processing at each node when it’s visited
Binary Tree Traversal

• Two types of tree traversal:
 • **Depth-first**: explores a tree subtree by subtree, visiting all of a node’s descendants before visiting any of its siblings.
 • moves as far downward in the tree as it can go before moving across in the tree

 • **Breadth-first**: explores a tree level by level, visiting every node at a given depth in the tree before moving downward
 • moves as far across the tree as it can go before moving down in the tree
Binary Tree Traversal: Depth-first

• Denote using N, L, and R:
 • N – visit/process the current node itself
 • L – traverse the left subtree of the current node
 • R – traverse the right subtree of the current node

• Three kinds of depth-first traversal:
 • Pre-order traversal (NLR): process the current node before traversing either of its subtrees
 • In-order traversal (LNR): traverse the current node’s left subtree before processing the node itself, and then traverse the node’s right subtree
 • Post-order traversal (LRN): traverse both of the current node’s subtrees (left, then right) before processing the node itself
Binary Tree Traversal: Depth-first

• Three kinds of depth-first traversal:
 • Pre-order traversal (NLR)
 • 64 30 10 2 17 32 75 72 73 77 90
 • In-order traversal (LNR)
 • 2 10 17 30 32 64 72 73 75 77 90
 • Post-order traversal (LRN)
 • 2 17 10 32 30 73 72 90 77 75 64

• Note: in-order traversal processes the nodes in sorted order!
Binary Tree Traversal: Depth-first

• Pseudocode of three kinds of depth-first traversal: using recursion
 • Pre-order traversal (NLR)
 \[
 \text{preOrder}(N): \\
 \quad \text{if } N \text{ is not NULL:} \\
 \quad \quad \text{process } N \\
 \quad \quad \text{preOrder}(N.\text{left}) \\
 \quad \quad \text{preOrder}(N.\text{right})
 \]
 • In-order traversal (LNR)
 \[
 \text{inOrder}(N): \\
 \quad \text{if } N \text{ is not NULL:} \\
 \quad \quad \text{inOrder}(N.\text{left}) \\
 \quad \quad \text{process } N \\
 \quad \quad \text{inOrder}(N.\text{right})
 \]
 • Post-order traversal (LRN)
 \[
 \text{postOrder}(N): \\
 \quad \text{if } N \text{ is not NULL:} \\
 \quad \quad \text{preOrder}(N.\text{left}) \\
 \quad \quad \text{preOrder}(N.\text{right}) \\
 \quad \quad \text{process } N
 \]
Binary Tree Traversal: Breadth-first

• One main kind of breadth-first traversal: level-order traversal

• Using a level-order traversal, the nodes are processed in this order: 64, 32, 80, 16, 48, 72, 88, 56, 84, 96.
Binary Tree Traversal: Breadth-first

• Pseudocode of level-order traversal: using a queue

```plaintext
eval levelOrder(bst):
    q = new, empty queue
    enqueue(q, bst.root)
    while q is not empty:
        N = dequeue(q)
        if N is not NULL:
            process N
            enqueue(q, N.left)
            enqueue(q, N.right)
```

![Binary Tree Diagram](image)