
CS 261-020
Data Structures

Lecture 9

Midterm Report

Binary Trees

2/15/24, Thursday

1

Odds and Ends

• Assignment 3 posted

• No quiz this week

• Don’t forget to demo your assignment 2!

2

Lecture Topics:

• Midterm Report

• Binary Trees

3

Binary Trees

4

• Binary Tree: a tree in which each node can have at most two children (left
child and right child).

• Left subtree: the subtree rooted at that node’s left child

• Right subtree: the subtree rooted at that node’s right child

Lecture Topics:

• BST Operations:
• Finding an element

• Inserting a new element

• Removing an element

• Runtime Complexity of BST operations

• BST traversals

5

BST Operations

6

• Remember:
• when a given node does not have a subtree on either the left or right side, the

node’s child on that side will be NULL.

• a leaf node in a BST is one where both the left and right child are NULL.

BST Operations: Finding an element

7

• Elements in a BST are located based on their keys
• When a user wants to locate an element, they will need to provide the key of the element

• How does it work?
• Keep a pointer to the current node N, starting at the root. Examining one node at a time

• If N is NULL, the key kq doesn’t exist in the tree, and the search has failed. Break.

• If N’s key is equal to kq, the search has succeeded. Break.

• If kq is less than the N’s key, move the current node to point to its left child and repeat.

• If kq is greater than N’s key , move the current node to point to its right child and repeat.

BST Operations: Finding an element

8

• Pseudocode: iteration
find(bst, kq){

N = bst.root

while N is not NULL{

if N.key equals kq
return success

else if kq < N.key

N = N.left

else:

N = N.right

}

return failure

}

• Example: search for key 17

BST Operations: Inserting a new element

9

• New elements are always inserted into a BST as leaves.
• avoid to restructure the tree

• Hint: find the location for the new element that maintains the BST
property at all nodes in the tree.

• find the location → using search/find function!
• Instead of stopping the search if/when k is found in the tree, insertion always

proceeds until reaching a NULL node

• The location of this NULL node, then, is the location at which to insert the new
node

• The new node will become the child of the NULL node’s parent

BST Operations: Inserting a new element

10

• Pseudocode:
insert(bst, k, v){

P = NULL
N = bst.root
while N is not NULL{

P = N
if k < N.key:

N = N.left
else:

N = N.right

}
create a new node as the child of P containing k, v

}

• P is used to track the location of the new node’s parent

• if P is NULL at the end of the search here, then the BST is empty, and the new node
should be inserted as the root of the tree

• If P is not NULL, then the new node will be inserted as either the left or right child of P,
depending on whether k is less than or greater than (or equal to) P’s key

BST Operations: Inserting a new element

11

• Pseudocode:
insert(bst, k, v){

P = NULL

N = bst.root

while N is not NULL{

P = N

if k < N.key:

N = N.left

else:

N = N.right

}

create a new node as the child

of P containing k, v

}

• Example: insert the key 40

BST Operations: Removing an element

12

• How to remove the element with a key 2?
• Easy! Simply remove it since it is a leaf node

• How to remove the element with a key 64?
• Umm, then which node should be our new root, so it maintains BST after removal?

BST Operations: Removing an element

13

• BST removal: depend on the number of
children that element’s BST node has

• If the element to be removed is a leaf
node: (i.e., 2)
• simply free that node and update its parent

to have a NULL child

• If the element to be removed is stored in
a node with just a single child: (i.e., 72)
• simply free that node and move its child to

become a child of the node’s parent

BST Operations: Removing an element

14

• If the element to be removed is stored in
a node with two children: (i.e., 64):
• need to find that node’s in-order successor

(the next node in in-order traversal of the
BST).

• Line up all keys in ascending order:

• 2 10 17 30 32 64 72 73 75 77 90

• The in-order successor for a node with key k,
is the node to the very next key after k in this
ordered list of keys
• i.e., the in-order successor of root (64) is the node

with key 72

BST Operations: Removing an element

15

• If the element to be removed is stored in
a node with two children: (i.e., 64):

• In BST, a node N’s in-order successor is always
the leftmost node in N’s right subtree.
• branch right in the tree from N, and then continue

to branch left until we can no longer do so, The
last node we reach will be N’s in-order successor

BST Operations: Removing an element

16

• If the element to be removed is stored in a node with
two children: (i.e., 64):

• Denote N’s parent node as PN (if N is the root
node, PN will represent the root pointer for the
entire tree)

• Find N’s in-order successor S. Denote S’s parent
node as PS.

• Update pointers to give N’s children to S
• N’s left child becomes S’s left child.

• S’s right child (which might be NULL) becomes PS’s left child.

• N’s right child becomes S’s right child.

• Update PN to replace N with S.

• Specifically, S becomes PN’s left or right child, as appropriate, or
the root of the tree, if N was the root.

• Free the node N.

BST Operations: Removing an element

17

• If the element to be removed is stored in a node with two children:
(i.e., 64):

BST Operations: Removing an element

18

• Pseudocode:
remove(bst, k):

N, PN ← find the node to be removed and its parent

based on key k, as in the find() function

if N has no children:

update PN to point to NULL instead of N

else if N has one child:

update PN to point to N’s child instead of N

else:

S, PS ← find N’s in-order successor and its

parent, as described above

S.left ← N.left

if S is not N.right:

PS.left ← S.right

S.right ← N.right

update PN to point to S instead of N

free N

BST Operations: Removing an element

19

• Example: Remove the root node (64)

BST Operations: Removing an element

20

• Example: Remove the root node (64)
• 1. identify that node’s in-order successor (S) and its parent (PS):

BST Operations: Removing an element

21

• Example: Remove the root node (64)
• 2. update pointers so that S replaces N and S’s right child replaces S as PS’s child:

BST Operations: Removing an element

22

• Example: Remove the root node (64)
• 3. The end result is a tree with the root node (i.e. N) removed.

• note that the BST property is maintained by this removal:

Lecture Topics:

• BST Operations:
• Finding an element

• Inserting a new element

• Removing an element

• Runtime Complexity of BST operations

• BST traversals

23

Runtime Complexity of BST Operations

24

• Main factor of all 3 BST operations: search within the tree
• find(): search for the query key

• insert(): search for the location at which to insert

• remove(): search for both query key and its in-order successor

• Search begins at the root, moves down one level at each iteration,
until reaches the bottom (or finds the node it is searching for)
• Number of search iteration == the height of the tree, h

• Thus, runtime complexity for searching in all 3 operations: O(h)

Runtime Complexity of BST Operations

25

• Extra work done besides searching:
• find(): none
• insert(): allocate the new node, and update its new parent → O(1)
• remove(): update a few pointers → O(1)

• Thus, the runtime complexity:
• find() – O(h)
• insert() – O(h)
• remove() – O(h)

• What is the range of h if the BST has n nodes?
• Depending on the order of insertion, h can be [log(n), n]

→ limit the height of the BST! (more later)

Lecture Topics:

• BST Operations:
• Finding an element

• Inserting a new element

• Removing an element

• Runtime Complexity of BST operations

• BST traversals

26

Binary Tree Traversal

27

• How to print the value stored at each node in a binary tree?

• A tree traversal: a method for visiting each node in a tree exactly
once and performing some operation or processing at each node
when it’s visited

Binary Tree Traversal

28

• Two types of tree traversal:
• Depth-first: explores a tree subtree by subtree, visiting all of a node’s

descendants before visiting any of its siblings.
• moves as far downward in the tree as it can go before moving across in the tree

• Breadth-first: explores a tree level by level, visiting every node at a given
depth in the tree before moving downward
• moves as far across the tree as it can go before moving down in the tree

Binary Tree Traversal: Depth-first

29

• Denote using N, L, and R:
• N – visit/process the current node itself

• L – traverse the left subtree of the current node

• R – traverse the right subtree of the current node

• Three kinds of depth-first traversal:
• Pre-order traversal (NLR): process the current node before traversing either

of its subtrees

• In-order traversal (LNR): traverse the current node’s left subtree before
processing the node itself, and then traverse the node’s right subtree

• Post-order traversal (LRN): traverse both of the current node’s subtrees (left,
then right) before processing the node itself

Binary Tree Traversal: Depth-first

30

• Three kinds of depth-first traversal:
• Pre-order traversal (NLR)

• 64 30 10 2 17 32 75 72 73 77 90

• In-order traversal (LNR)
• 2 10 17 30 32 64 72 73 75 77 90

• Post-order traversal (LRN)
• 2 17 10 32 30 73 72 90 77 75 64

• Note: in-order traversal processes the
nodes in sorted order!

Binary Tree Traversal: Depth-first

31

• Pseudocode of three kinds of depth-first traversal: using recursion
• Pre-order traversal (NLR)

preOrder(N):
if N is not NULL:

process N
preOrder(N.left)
preOrder(N.right)

• In-order traversal (LNR)
inOrder(N):

if N is not NULL:
inOrder(N.left)
process N
inOrder(N.right)

• Post-order traversal (LRN)
postOrder(N):

if N is not NULL:
preOrder(N.left)
preOrder(N.right)
process N

Binary Tree Traversal: Breadth-first

32

• One main kind of breadth-first traversal: level-order traversal

• Using a level-order traversal, the nodes are processed in this
order: 64, 32, 80, 16, 48, 72, 88, 56, 84, 96.

Binary Tree Traversal: Breadth-first

33

• Pseudocode of level-order traversal: using a queue
levelOrder(bst):

q = new, empty queue

enqueue(q, bst.root)

while q is not empty:

N = dequeue(q)

if N is not NULL:

process N

enqueue(q, N.left)

enqueue(q, N.right)

	Slide 1: CS 261-020 Data Structures
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Binary Trees
	Slide 5: Lecture Topics:
	Slide 6: BST Operations
	Slide 7: BST Operations: Finding an element
	Slide 8: BST Operations: Finding an element
	Slide 9: BST Operations: Inserting a new element
	Slide 10: BST Operations: Inserting a new element
	Slide 11: BST Operations: Inserting a new element
	Slide 12: BST Operations: Removing an element
	Slide 13: BST Operations: Removing an element
	Slide 14: BST Operations: Removing an element
	Slide 15: BST Operations: Removing an element
	Slide 16: BST Operations: Removing an element
	Slide 17: BST Operations: Removing an element
	Slide 18: BST Operations: Removing an element
	Slide 19: BST Operations: Removing an element
	Slide 20: BST Operations: Removing an element
	Slide 21: BST Operations: Removing an element
	Slide 22: BST Operations: Removing an element
	Slide 23: Lecture Topics:
	Slide 24: Runtime Complexity of BST Operations
	Slide 25: Runtime Complexity of BST Operations
	Slide 26: Lecture Topics:
	Slide 27: Binary Tree Traversal
	Slide 28: Binary Tree Traversal
	Slide 29: Binary Tree Traversal: Depth-first
	Slide 30: Binary Tree Traversal: Depth-first
	Slide 31: Binary Tree Traversal: Depth-first
	Slide 32: Binary Tree Traversal: Breadth-first
	Slide 33: Binary Tree Traversal: Breadth-first

