
Writing Requirements

A User-Centered Human-Machine Systems Engineering Process

Writing Requirements

Guidelines for a Requirements Document:

- Requirements state something:
 - Necessary
 - Verifiable
 - Attainable
 - and they state it clearly.
- Common Problems:
 - Making bad assumptions
 - Writing implementation (HOW) instead of requirements (WHAT)
 - Describing operations instead of writing requirements
 - Using incorrect terms
 - Using incorrect sentence structure or bad grammar
 - Missing requirements
 - Over-specifying

Making bad assumptions

- No access to appropriate information
 - Solution: Make information available to all authors by, e.g.,
 - Notebook
 - Website
- Information does not exist
 - Solution: Authors should document all assumptions

Writing implementation (HOW) instead of requirements (WHAT)

- Example:
 - The workstation shall include an RDM hydraulic lift, adjustable-height work table. (IMPLEMENTATION)
- The requirement should state WHAT is needed not HOW it is to be provided.
- Solution: Ask the question: WHY do you need the requirement?

Writing implementation (HOW) instead of requirements (WHAT)

Answers:

- Workers of both genders and various sizes will use the workstation, seated or standing.
- A typical workpiece requires handwork above the surface supporting it.
- By ergonomic guidelines, the workpiece should be slightly (~2") below elbow level.
- This is real requirement:
 - The workstation shall be adjustable so that the work surface is between 20.3" and 45.9" above the floor.
- It leaves lots of options open for implementation.

Describing operations instead of writing requirements

- Similar to the implementation problem
- Examples:
 - Tools shall be returned to dedicated storage spaces when they are no longer needed. (OPERATION)
 - Workers shall place the parts needed for each widget in a separate container for temporary storage and transportation. (OPERATION)
- Real Requirements:
 - A dedicated storage space shall be provided for each tool.
 - A means shall be provided for temporary storage and transportations of the parts required for each widget.

Using Incorrect Terms

Use of Terms:

- Requirements use the word "shall".
- Statements of fact use "will".
- Goals use "should".

Terms to avoid:

- support
- but not limited to
- etc.
- and/or

Using incorrect sentence structure or bad grammar

- Requirements should be easy to read and understand.
- Format:
 - Means shall be provided to ...
 - The system* shall be capable of ...
 - The system* shall weigh no more than ...
 - Users of unexceptional skill shall be able to ...
 - Subsystem #1* shall provide
 - Subsystem #2* shall interface with ...
 - * Note: The name of the system and subsystem appears in these locations; if the system name is complex, use acronyms.
- Guidelines:
 - Each "shall" should be followed by a single predicate, not by a list.
 - Should not be complicated by explanation of operations, design or other information.

Unverifiable Requirements

- Avoid ambiguous terms:
 - Minimize
 - Maximize
 - Rapid
 - User-friendly
 - Easy
 - Sufficient
 - Adequate
 - Quick
- Be specific.
 - How rapid? 10 per hour, 5 per hour.
 - What is sufficient? 10 units, 100 units.
 - What is user-friendly?
- If you are not sure yet,
 - enclose the term in asterisks (e.g., *rapid*).

Missing requirements

- Use models and other elaboration tools to make sure every aspect of the system is specified.
- Requirements Drivers
 Checklist (i.e., possible requirements to include) →

- Functionality
- Performance
- Interface
- Environment
- Facility
- Transportation
- Deployment
- Training
- Personnel
- Reliability
- Maintainability
- Usability/Operability
- Safety
- Regulatory
- Security
- Privacy

Over-specifying

- Major cause of cost overruns and delivery time delays.
- Ask the question why it is needed before writing it as a requirement.
- Be aware of over stringent requirements
 - Allow for tolerances (i.e. if height of a table is specified to be 1000 mm allow for variations, such as 1000 +/- 10mm)

Validation: Making Sure the Requirements Are Correct

- Examine the requirements for:
 - Ambiguity
 - Inconsistencies
 - Completeness/Omissions
 - Errors
- Validation reviewers:
 - Engineers
 - Users
 - Customers
 - Other stakeholders

IE 545 Requirements Management

- Organization of requirements
 - by system processes
 - by categories (functionality, user interface, etc.)
- Optional: Recorded in HMSE workbook
 - Requirement Number
 - Requirement Text
 - Process/Activity ID & Name
 - Author
 - Requirement Status
 - preliminary: not yet verifiable
 - ≈ House of Quality Customer Requirement
 - unmet: verifiable but not yet met
 - ≈ HoQ Engineering Requirement (unmet)
 - met: verifiable and met
 - ≈ HoQ ER (met)
 - Test Procedure
 - Comment

Requirements Examples

SMART: Guidelines For Checking Requirements

- S Specific? Well defined and clear to anyone involved in the product/process.
- M Measurable? Have a way of quantifiable measurement to know when the requirement is reached, or at least the potential for that. Some flexibility in Customer Requirements.
- A Agreed Upon? Agreement between both you and your customer.
- **R** Realistic? Within the availability of resources and knowledge.
- T Time Based? Enough time to produce the desired result.